HashMap存储结构

内部包含了⼀个 Entry 类型的数组 Entry[] table。transient Entry[] table;(transient:表示不能被序列化)Entry类型存储着键值对。它包含了四个字段, Entry 是⼀个链表。即数组中的每个位置被当成⼀个桶,⼀个桶存放⼀个Entry链表。HashMap 使⽤拉链法来解决冲突,同⼀个链表中存放哈希值和散列桶取模运算结果相同的 Entry。

常规操作

  • final K getKey();
  • final V getValue();
  • final V setValue(V newValue);
  • final boolean equals(Object o);
  • final int hashCode();
  • final String toString();
static class Entry<K,V> implements Map.Entry<K,V> {
 final K key;
 V value;
 Entry<K,V> next;
 int hash;
 Entry(int h, K k, V v, Entry<K,V> n) {
 value = v;
 next = n;
 key = k;
 hash = h;
2. 拉链法的⼯作原理
 }
 public final K getKey() {
 return key;
 }
 public final V getValue() {
 return value;
 }
 public final V setValue(V newValue) {
 V oldValue = value;
 value = newValue;
 return oldValue;
 }
 public final boolean equals(Object o) {
 if (!(o instanceof Map.Entry))
 return false;
 Map.Entry e = (Map.Entry)o;
 Object k1 = getKey();
 Object k2 = e.getKey();
 if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 Object v1 = getValue();
 Object v2 = e.getValue();
 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 return true;
 }
 return false;
 }
 public final int hashCode() {
 return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
 }
 public final String toString() {
 return getKey() + "=" + getValue();
 }
}

插入put操作

  • 插入数组是对hash值与散列表使用除留余数的方法计算得到对应桶序号;
  • 插入时采用链表的头插法进行插入;
  • HashMap 允许插⼊键为 null 的键值对。但是因为 null 的 hashCode() ⽅法,也就⽆法确定该键值对应桶下标,只能通过强制指定第 0 个桶存放键为 null 的键值对;
public V put(K key, V value) {
 if (table == EMPTY_TABLE) {
 inflateTable(threshold);
 }
 // 键为 null 单独处理
 if (key == null)
 return putForNullKey(value);
 int hash = hash(key);
 // 确定桶下标
 int i = indexFor(hash, table.length);
 // 先找出是否已经存在键为 key 的键值对,如果存在的话就更新这个键值对的值为 value
 for (Entry<K,V> e = table[i]; e != null; e = e.next) {
 Object k;
 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
 V oldValue = e.value;
 e.value = value;
 e.recordAccess(this);
 return oldValue;
 }
 }
 modCount++;
 // 插⼊新键值对
 addEntry(hash, key, value, i);
 return null; }
private V putForNullKey(V value) {
 for (Entry<K,V> e = table[0]; e != null; e = e.next) {
 if (e.key == null) {
 V oldValue = e.value;
 e.value = value;
 e.recordAccess(this);
 return oldValue;
 }
 }
 modCount++;
 addEntry(0, null, value, 0);
 return null; }
void addEntry(int hash, K key, V value, int bucketIndex) {
 if ((size >= threshold) && (null != table[bucketIndex])) {
 resize(2 * table.length);
 hash = (null != key) ? hash(key) : 0;
 bucketIndex = indexFor(hash, table.length);
 }
 createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
 Entry<K,V> e = table[bucketIndex];
 // 头插法,链表头部指向新的键值对
 table[bucketIndex] = new Entry<>(hash, key, value, e);
 size++; }

扩容

设 HashMap 的 table ⻓度为 M,需要存储的键值对数量为 N,如果哈希函数满⾜均匀性的要求,那么每条链表的⻓度⼤约为 N/M,因此查找的复杂度为 O(N/M)。为了让查找的成本降低,应该使 N/M 尽可能⼩,因此需要保证 M 尽可能⼤,也就是说 table 要尽可能⼤。

  • HashMap 采⽤动态扩容来根据当前的键值对数量来调整数组长度,使得空间效率和时间效率都能得到保证。(HashMap扩容并不是等到数组满了才扩容,因为元素是插入到链表中,永远也不会满,所以有一个阈值–threshold,当等于它时就进行扩容操作)
  • capacity一般为2的n次方,即使用户传入的不是2的n次方,它也可以⾃动地将传⼊的容量转换为 2 的n 次⽅。原因是除留余数取模时采用的是位运算来代替取模运算,能够极⼤降低重新计算桶下标操作的复杂度。(位运算只用于2进制,所以需要2的n次方);
  • 当需要扩容时,使⽤ resize() 实现,令 capacity 为原来的两倍,扩容操作需要把oldTable 的所有键值对重新插入newTable 中,因此这⼀步是很费时的。
  • 当⼀个桶存储的链表⻓度⼤于等于 8 时会将链表转换为红⿊树。
参数含义
capacitytable 的容量⼤⼩,默认为 16。需要注意的是 capacity 必须保证为 2 的 n 次⽅。
size键值对数量。
thresholdsize 的临界值,当 size ⼤于等于 threshold 就必须进⾏扩容操作。
loadFactor装载因⼦,table 能够使⽤的⽐例,threshold = (int)(capacity* loadFactor)。
static final int DEFAULT_INITIAL_CAPACITY = 16;
static final int MAXIMUM_CAPACITY = 1 << 30;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
transient Entry[] table;
transient int size;
int threshold;
final float loadFactor;
transient int modCount;
void addEntry(int hash, K key, V value, int bucketIndex) {
 Entry<K,V> e = table[bucketIndex];
 table[bucketIndex] = new Entry<>(hash, key, value, e);
 if (size++ >= threshold)
 resize(2 * table.length);
}
void resize(int newCapacity) {
 Entry[] oldTable = table;
 int oldCapacity = oldTable.length;
 if (oldCapacity == MAXIMUM_CAPACITY) {
 threshold = Integer.MAX_VALUE;
 return;
 }
 Entry[] newTable = new Entry[newCapacity];
 transfer(newTable);
 table = newTable;
 threshold = (int)(newCapacity * loadFactor);
}
void transfer(Entry[] newTable) {
 Entry[] src = table;
 int newCapacity = newTable.length;
 for (int j = 0; j < src.length; j++) {
 Entry<K,V> e = src[j];
 if (e != null) {
 src[j] = null;
 do {
 Entry<K,V> next = e.next;
 int i = indexFor(e.hash, newCapacity);
 e.next = newTable[i];
 newTable[i] = e;
 e = next;
 } while (e != null);
 }
 }
}

与 Hashtable 的⽐较**

Hashtable 使⽤ synchronized 来进⾏同步。
HashMap 可以插⼊键为 null 的 Entry。
HashMap 的迭代器是 fail-fast 迭代器。
HashMap 不能保证随着时间的推移 Map 中的元素次序是不变的。

总结

欢迎关注公众号:前程有光,领取一线大厂Java面试题总结+各知识点学习思维导+一份300页pdf文档的Java核心知识点总结!


前程有光
936 声望618 粉丝