1

CAP原则

image.png

CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance)。
  • 一致性 : 所有的分布式节点都要保证数据一致性;
  • 可用性 : 在集群中一部分节点失效后,剩余节点还能提供同样的服务**[高可用]**
  • 分区容忍性 : 当网络出现问题时,服务出现分区的现象[在整个系统中某个部分,挂掉了,或者宕机了,并不影响整个系统的运作与使用--个人观点];

这三个概念所介绍的就是常见的分布式系统中会经常遇到的问题。

  1. 一致性(Consistency,C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)。
  2. 可用性(Availability,A):在一个分布式系统的集群中一部分节点故障后,该集群是否还能够正常响应客户端的读写请求。(对数据更新具备高可用性)。
  3. 分区容错性(Partition tolerance,P):大多数的分布式系统都分布在多个子网络中,而每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如阿里巴巴的服务器(不知道各位有没有发现,不管你到那个城市去,你访问的服务器总是该城市的,其中使用 了算法,由于篇幅有限就不再这儿一一讲解了),一台服务器放在上海,另一台服务器放在北京,这就是两个区,它们之间可能存在无法通信的情况。在一个分布式系统中一般分区容错是无法避免的,因此可以认为 CAP 中的 P 总是成立的。CAP 理论告诉我们,在 C 和 A 之间是无法同时做到。

C-A不能同时满足的解释:

如果C是第一需求的话,那么会影响A的性能,因为要数据同步,不然请求结果会有差异,但是数据同步会消耗时间,期间可用性就会降低;
如果A是第一需求,那么只要有一个服务在,就能正常接受请求,但是对与返回结果变不能保证,原因是,在分布式部署的时候,数据一致的过程不可能想切线路那么快;

官方解释

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency
  • Availability
  • Partition tolerance

它们的第一个字母分别是 C、A、P。

Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

  1. Partition tolerance

先看 Partition tolerance,中文叫做"分区容错"。

大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。

上图中,G1 和 G2 是两台跨区的服务器。G1 向 G2 发送一条消息,G2 可能无法收到。系统设计的时候,必须考虑到这种情况。

一般来说,分区容错无法避免,因此可以认为 CAP 的 P 总是成立。CAP 定理告诉我们,剩下的 C 和 A 无法同时做到。

  1. Consistency 一致性

=======================================================================================================================

Consistency 中文叫做"一致性"。意思是,写操作之后的读操作,必须返回该值。举例来说,某条记录是 v0,用户向 G1 发起一个写操作,将其改为 v1。

接下来,用户的读操作就会得到 v1。这就叫一致性。

2020-10-09-ppjNzM

问题是,用户有可能向 G2 发起读操作,由于 G2 的值没有发生变化,因此返回的是 v0。G1 和 G2 读操作的结果不一致,这就不满足一致性了。

为了让 G2 也能变为 v1,就要在 G1 写操作的时候,让 G1 向 G2 发送一条消息,要求 G2 也改成 v1。

这样的话,用户向 G2 发起读操作,也能得到 v1。

  1. Availability

=========================================================================================================================

Availability 中文叫做"可用性",意思是只要收到用户的请求,服务器就必须给出回应。

用户可以选择向 G1 或 G2 发起读操作。不管是哪台服务器,只要收到请求,就必须告诉用户,到底是 v0 还是 v1,否则就不满足可用性。

  1. Consistency 和 Availability 的矛盾

=====================================================================================================================================================================

一致性和可用性,为什么不可能同时成立?

答案很简单,因为可能通信失败(即出现分区容错)。

  • 如果保证 G2 的一致性,那么 G1 必须在写操作时,锁定 G2 的读操作和写操作。只有数据同步后,才能重新开放读写。锁定期间,G2 不能读写,没有可用性不。
  • 如果保证 G2 的可用性,那么势必不能锁定 G2,所以一致性不成立。

*综上所述,G2 无法同时做到一致性和可用性。系统设计时只能选择一个目标。如果追求一致性,那么无法保证所有节点的可用性;如果追求所有节点的可用性,那就没法做到一致性。

读者问,在什么场合,可用性高于一致性?

举例来说,发布一张网页到 CDN,多个服务器有这张网页的副本。后来发现一个错误,需要更新网页,这时只能每个服务器都更新一遍。

一般来说,网页的更新不是特别强调一致性。短时期内,一些用户拿到老版本,另一些用户拿到新版本,问题不会特别大。当然,所有人最终都会看到新版本。所以,这个场合就是可用性高于一致性。


逐梦小生
222 声望249 粉丝