1. 准备测试数据,将数据下载到本地:
https://github.com/elastic/el...
数据结构:
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "bradshawmckenzie@euron.com",
"city": "Hobucken",
"state": "CO"
}
2. 导入数据到es
进入到accounts.json文件的目录执行导入命令,该命令会自动创建bank索引
curl -H "Content-Type: application/json" -XPOST "localhost:9200/bank/_bulk?pretty&refresh" --data-binary "@accounts.json"
curl "localhost:9200/_cat/indices?v=true"
3. 查询操作
# 查询bank索引所有数据,默认显示10条
GET /bank/_search
# 分页查询并根据account_number降序
GET /bank/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"account_number": {
"order": "desc"
}
}
],
"from": 10,
"size": 1
}
# 查询address包含mill或lane
GET /bank/_search
{
"query": {
"match": {
"address": "mill lane"
}
}
}
# 仅匹配包含mill lane的内容
GET /bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
#使用bool来构造复杂查询,age为40但state不为id
GET /bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"age": "40"
}
}
],
"must_not": [
{
"match": {
"state": "ID"
}
}
]
}
}
}
# 使用filter过滤数据
GET /bank/_search
{
"query": {
"bool": {
"must": [
{
"match_all": {}
}
],
"filter": {
"range": {
"balance": {
"gte": 20000,
"lte": 30000
}
}
}
}
}
}
# 聚合查询
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_gender": {
"terms": {
"field": "gender.keyword"
}
}
}
}
#嵌套聚合查询并排序
GET /bank/_search
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "city.keyword",
"order": {
"average_balance": "desc"
}
},
"aggs": {
"average_balance": {
"avg": {
"field": "balance"
}
}
}
}
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。