本文主要讲wakep startm
wakep在newproc可能会调用(main起来之后)会调用wakep
startm在wakep 中调用
mstart 在rt0_go中调用,执行main
系统线程m

在golang中有三种系统线程:

主线程:golang程序启动加载的时候就运行在主线程上,代码中由一个全局的m0表示
运行sysmon的线程
普通用户线程,用来与p绑定,运行g中的任务的线程,
主线程和运行sysmon都是单实例,单独一个线程。而用户线程会有很多事例,他会根据调度器的需求新建,休眠和唤醒。

wakep startm

// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
// 添加一个闲置的p来执行g
func wakep() {
    if atomic.Load(&sched.npidle) == 0 {                        // 没有限制的g, 返回
        return
    }
    // be conservative about spinning threads
    if atomic.Load(&sched.nmspinning) != 0 || !atomic.Cas(&sched.nmspinning, 0, 1) {    // 
        return
    }
    startm(nil, true)
}
// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
// May run with m.p==nil, so write barriers are not allowed.
// If spinning is set, the caller has incremented nmspinning and startm will
// either decrement nmspinning or set m.spinning in the newly started M.
//
// Callers passing a non-nil P must call from a non-preemptible context. See
// comment on acquirem below.
//
// Must not have write barriers because this may be called without a P.
// 调度一些M去运行P
// 如果p不存在则从缓存获取P,没有P就返回
// 如果spinning是true,那个相应的startm需要减去nmspinning
// 如果调用者调用含有非空p,那么Callers就不能被抢占

//go:nowritebarrierrec
func startm(_p_ *p, spinning bool) {
    // Disable preemption.
    //
    // Every owned P must have an owner that will eventually stop it in the
    // event of a GC stop request. startm takes transient ownership of a P
    // (either from argument or pidleget below) and transfers ownership to
    // a started M, which will be responsible for performing the stop.
    // 每个拥有的P必须具有一个所有者,该所有者将在GC请求终止的情况下最终将其停止。 
    // startm取得P的临时所有权(从下面的参数或pidleget中获取),并将所有权转移给已启动的M,该M将负责执行停止。
    //
    // Preemption must be disabled during this transient ownership,
    // otherwise the P this is running on may enter GC stop while still
    // holding the transient P, leaving that P in limbo and deadlocking the
    // STW.
    // 在此短暂所有权期间,必须禁用抢占,否则正在运行的P可能会在仍然保持该暂态P的同时进入GC停止,
    // 从而使该P处于混乱状态并使STW死锁。
    
    // Callers passing a non-nil P must already be in non-preemptible
    // context, otherwise such preemption could occur on function entry to
    // startm. Callers passing a nil P may be preemptible, so we must
    // disable preemption before acquiring a P from pidleget below.
    // 传递非nil P的调用者必须已经在不可抢占的上下文中,否则这种抢占可能发生在向进入startm的函数时。 
    // 传递nil P的调用者可能是可抢占的,因此在从下面的pidleget获取P之前,我们必须先禁用抢占。
    mp := acquirem()                                    // 禁止抢占
    lock(&sched.lock)
    if _p_ == nil {
        _p_ = pidleget()
        if _p_ == nil {                                 // 没有空闲的p了,只能回去了                          
            unlock(&sched.lock)
            if spinning {
                // The caller incremented nmspinning, but there are no idle Ps,
                // so it's okay to just undo the increment and give up.
                if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
                    throw("startm: negative nmspinning")
                }
            }
            releasem(mp)                            // 可以抢占了
            return
        }
    }
    nmp := mget()                                   // 获取一个全局空闲的m
    if nmp == nil {                                 // 没有空闲的m了
        // No M is available, we must drop sched.lock and call newm.
        // However, we already own a P to assign to the M.
        //
        // Once sched.lock is released, another G (e.g., in a syscall),
        // could find no idle P while checkdead finds a runnable G but
        // no running M's because this new M hasn't started yet, thus
        // throwing in an apparent deadlock.
        //
        // Avoid this situation by pre-allocating the ID for the new M,
        // thus marking it as 'running' before we drop sched.lock. This
        // new M will eventually run the scheduler to execute any
        // queued G's.
        id := mReserveID()
        unlock(&sched.lock)

        var fn func()
        if spinning {
            // The caller incremented nmspinning, so set m.spinning in the new M.
            fn = mspinning
        }
        newm(fn, _p_, id)                   //  简单新建一个m,就可以回去了
        // Ownership transfer of _p_ committed by start in newm.
        // Preemption is now safe.
        releasem(mp)                        // 释放当前g的m,可以被抢占了
        return
    }
    unlock(&sched.lock)
    if nmp.spinning {
        throw("startm: m is spinning")
    }
    if nmp.nextp != 0 {
        throw("startm: m has p")
    }
    if spinning && !runqempty(_p_) {
        throw("startm: p has runnable gs")
    }
    // The caller incremented nmspinning, so set m.spinning in the new M.
    nmp.spinning = spinning             //标记该M是否在自旋
    nmp.nextp.set(_p_)                  // 暂存P
    notewakeup(&nmp.park)               // 唤醒M
    // Ownership transfer of _p_ committed by wakeup. Preemption is now
    // safe.
    releasem(mp)
}

startm主要完成任务:

  1. 如果_p_为空就获取缓存的_p_
  2. 如果没有空闲的m, new一个m并且初始化m, 包括创建go和gsignal, 新建系统线程,并且在上面执行mstart
  3. 如果有空闲的m, 唤醒m

newm

// Create a new m. It will start off with a call to fn, or else the scheduler.
// fn needs to be static and not a heap allocated closure.
// May run with m.p==nil, so write barriers are not allowed.
//
// id is optional pre-allocated m ID. Omit by passing -1.
//go:nowritebarrierrec
func newm(fn func(), _p_ *p, id int64) {
    mp := allocm(_p_, fn, id)                   // new一个m并且初始化m, 包括创建go和gsignal
    mp.doesPark = (_p_ != nil)                  // m是否应该挂起, P!=nil 就可以直接用p执行了 就不用挂起了
    mp.nextp.set(_p_)
    mp.sigmask = initSigmask 
    if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" {
        // We're on a locked M or a thread that may have been
        // started by C. The kernel state of this thread may
        // be strange (the user may have locked it for that
        // purpose). We don't want to clone that into another
        // thread. Instead, ask a known-good thread to create
        // the thread for us.
        //
        // This is disabled on Plan 9. See golang.org/issue/22227.
        //
        // TODO: This may be unnecessary on Windows, which
        // doesn't model thread creation off fork.
        lock(&newmHandoff.lock)
        if newmHandoff.haveTemplateThread == 0 {
            throw("on a locked thread with no template thread")
        }
        mp.schedlink = newmHandoff.newm
        newmHandoff.newm.set(mp)
        if newmHandoff.waiting {
            newmHandoff.waiting = false
            notewakeup(&newmHandoff.wake)
        }
        unlock(&newmHandoff.lock)
        return
    }
    // 关联真正的分配os thread
    // 分配一个系统线程,且完成 g0上的栈分配
    // 传入 mstart 函数,让线程执行 mstart
    newm1(mp)
}

newm的主要任务:

  1. new一个m并且初始化m, 包括创建go和gsignal
  2. 初始化一些参数
  3. 新建一个系统线程并且执行mstart
func newm1(mp *m) {
    if iscgo {
        var ts cgothreadstart
        if _cgo_thread_start == nil {
            throw("_cgo_thread_start missing")
        }
        ts.g.set(mp.g0)
        ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
        ts.fn = unsafe.Pointer(funcPC(mstart))
        if msanenabled {
            msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
        }
        execLock.rlock() // Prevent process clone.
        asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
        execLock.runlock()
        return
    }
    execLock.rlock() // Prevent process clone.
    newosproc(mp)
    execLock.runlock()
}

Linux newosproc

// May run with m.p==nil, so write barriers are not allowed.
//go:nowritebarrier
func newosproc(mp *m) {
    // 分配一个系统线程,且完成 g0上的栈分配
    // 传入 mstart 函数,让线程执行 mstart
    stk := unsafe.Pointer(mp.g0.stack.hi)
    /*
     * note: strace gets confused if we use CLONE_PTRACE here.
     */
    if false {
        print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n")
    }

    // Disable signals during clone, so that the new thread starts
    // with signals disabled. It will enable them in minit.
    var oset sigset
    sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
    ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
    sigprocmask(_SIG_SETMASK, &oset, nil)

    if ret < 0 {
        print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
        if ret == -_EAGAIN {
            println("runtime: may need to increase max user processes (ulimit -u)")
        }
        throw("newosproc")
    }
}

Windows newosproc

// May run with m.p==nil, so write barriers are not allowed. This
// function is called by newosproc0, so it is also required to
// operate without stack guards.
//go:nowritebarrierrec
//go:nosplit
func newosproc(mp *m) {
    // 分配一个系统线程,且完成 g0 和 g0上的栈分配
    // 传入 mstart 函数,让线程执行 mstart
    // We pass 0 for the stack size to use the default for this binary.
    thandle := stdcall6(_CreateThread, 0, 0,
        funcPC(tstart_stdcall), uintptr(unsafe.Pointer(mp)),
        0, 0)

    if thandle == 0 {
        if atomic.Load(&exiting) != 0 {
            // CreateThread may fail if called
            // concurrently with ExitProcess. If this
            // happens, just freeze this thread and let
            // the process exit. See issue #18253.
            lock(&deadlock)
            lock(&deadlock)
        }
        print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", getlasterror(), ")\n")
        throw("runtime.newosproc")
    }

    // Close thandle to avoid leaking the thread object if it exits.
    stdcall1(_CloseHandle, thandle)
}

allocm

分配一个m,且不关联任何一个os thread

// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
// fn is recorded as the new m's m.mstartfn.
// id is optional pre-allocated m ID. Omit by passing -1.
//
// This function is allowed to have write barriers even if the caller
// isn't because it borrows _p_.
//
//go:yeswritebarrierrec
func allocm(_p_ *p, fn func(), id int64) *m {
    _g_ := getg()
    acquirem() // disable GC because it can be called from sysmon
    if _g_.m.p == 0 {           // 为什么会可能没有绑定p呢
        // 把__p__和g.m相互绑定,并且把_p_.status 从_Pidle转为_Prunning
        acquirep(_p_) // temporarily borrow p for mallocs in this function
    }

    // Release the free M list. We need to do this somewhere and
    // this may free up a stack we can use.
    // mexit的时候会加到freem, m.gsignal会在那时候释放,这个结构
    // 因为m是又new创建的,可以由gc释放
    if sched.freem != nil {             
        lock(&sched.lock)
        var newList *m
        for freem := sched.freem; freem != nil; {
            if freem.freeWait != 0 {
                next := freem.freelink
                freem.freelink = newList
                newList = freem
                freem = next
                continue
            }
            // stackfree must be on the system stack, but allocm is
            // reachable off the system stack transitively from
            // startm.
            systemstack(func() {
                stackfree(freem.g0.stack)
            })
            freem = freem.freelink
        }
        sched.freem = newList
        unlock(&sched.lock)
    }

    mp := new(m)
    mp.mstartfn = fn
    mcommoninit(mp, id)  //在文章(一)有介绍,主要是创建gsignal, 并且把m加入allm

    // In case of cgo or Solaris or illumos or Darwin, pthread_create will make us a stack.
    // Windows and Plan 9 will layout sched stack on OS stack.
    // 创建g0
    if iscgo || mStackIsSystemAllocated() {     
        mp.g0 = malg(-1)
    } else {
        mp.g0 = malg(8192 * sys.StackGuardMultiplier)
    }
    mp.g0.m = mp

    if _p_ == _g_.m.p.ptr() {
        releasep()              // 相互_g_.m和__p__相互解绑
    }
    releasem(_g_.m)             // 可以抢占

    return mp
}

_P_的作用是_g_.m为空的时候借用来申请堆内存的, 借完_p_.status 设置成_Pidle并且还回去
allocm 主要完成一下任务:

  1. new一个m并且初始化m, 包括创建go和gsignal

引用文章

[1] Go语言内幕(6):启动和内存分配初始化 https://studygolang.com/artic...


xxx小M
30 声望11 粉丝

暂时放一些读书笔记, 很多内容没有整理好