1.channel的作用

Channel 是 Go 语言中一个非常重要的类型,是 Go 里的第一对象。通过 channel,Go 实现了通过通信来实现内存共享, 实际上:(数据拷贝了一份,并通过 channel 传递,本质就是个队列)。Channel 是在多个goroutine 之间传递数据和同步的重要手段。使用原子函数、读写锁可以保证资源的共享访问安全,但使用channel 更优雅。

channel 字面意义是 “通道”,类似于 Linux 中的管道。声明 channel 的语法如下:

chan ch // 声明一个双向通道
chan<- ch // 声明一个只能用于发送的通道
<-chan ch // 声明一个只能用于接收的通道COPY

ch <- v    // 发送值v到Channel ch中
v := <-ch  // 从Channel ch中接收数据,并将数据赋值给v

// 就像 map 和 slice 数据类型一样, channel必须先创建再使用:
ch := make(chan int)

单向通道的声明,用 <- 来表示,它指明通道的方向。你只要明白,代码的书写顺序是从左到右就马上能掌握通道的方向是怎样的。

因为 channel 是一个引用类型,所以在它被初始化之前,它的值是 nil,channel 使用 make函数进行初始化。可以向它传递一个 int 值,代表 channel 缓冲区的大小(容量),构造出来的是一个缓冲型的 channel;不传或传 0 的,构造的就是一个非缓冲型的 channel。

两者有一些差别:非缓冲型 channel 无法缓冲元素,对它的操作一定顺序是 “发送 -> 接收 -> 发送 -> 接收 -> ……”,如果想连续向一个非缓冲 chan 发送 2 个元素,并且没有接收的话,第一次一定会被阻塞;对于缓冲型 channel 的操作,则要 “宽松” 一些,毕竟是带了 “缓冲” 光环。
对 chan 的发送和接收操作都会在编译期间转换成为底层的发送接收函数。

v, ok := <-ch

它可以用来检查Channel是否已经被关闭了

2.同步与异步

Channel 分为两种:带缓冲、不带缓冲。对不带缓冲的 channel 进行的操作实际上可以看作 “同步模式”,带缓冲的则称为 “异步模式”。

同步模式下,发送方和接收方要同步就绪,只有在两者都 ready 的情况下,数据才能在两者间传输(后面会看到,实际上就是内存拷贝)。否则,任意一方先行进行发送或接收操作,都会被挂起,等待另一方的出现才能被唤醒。

异步模式下,在缓冲槽可用的情况下(有剩余容量),发送和接收操作都可以顺利进行。否则,操作的一方(如写入)同样会被挂起,直到出现相反操作(如接收)才会被唤醒。

特性:【Go - Channel 原理

  • 给一个 nil channel 发送数据,造成永远阻塞
  • 从一个 nil channel 接收数据,造成永远阻塞
  • 给一个已经关闭的 channel 发送数据,引起 panic
  • 从一个已经关闭的 channel 接收数据,如果缓冲区中为空,则返回一个零值
  • 无缓冲的channel是同步的,而有缓冲的channel是非同步的

image.png

以上5个特性是死东西,也可以通过口诀来记忆:空读写阻塞,写关闭异常,读关闭空零

blocking
默认情况下,发送和接收会一直阻塞着,直到另一方准备好。这种方式可以用来在gororutine中进行同步,而不必使用显示的锁或者条件变量。

如官方的例子中x, y := <-c, <-c这句会一直等待计算结果发送到channel中。

import "fmt"
func sum(s []int, c chan int) {
    sum := 0
    for _, v := range s {
        sum += v
    }
    c <- sum // send sum to c
}
func main() {
    s := []int{7, 2, 8, -9, 4, 0}
    c := make(chan int)
    go sum(s[:len(s)/2], c)
    go sum(s[len(s)/2:], c)
    x, y := <-c, <-c // receive from c
    fmt.Println(x, y, x+y)
}

Range
for …… range语句可以处理Channel。
for ... range c { do } 这种写法相当于 if _, ok := <-c; ok { do }

func main() {
    go func() {
        time.Sleep(1 * time.Hour)
    }()
    c := make(chan int)
    go func() {
        for i := 0; i < 10; i = i + 1 {
            c <- i
        }
        close(c)
    }()
    for i := range c {
        fmt.Println(i)
    }
    fmt.Println("Finished")
}

range c产生的迭代值为Channel中发送的值,它会一直迭代直到channel被关闭。上面的例子中如果把close(c)注释掉,程序会一直阻塞在for …… range那一行(不会报错)。

select
select语句选择一组可能的send操作和receive操作去处理。它类似switch,但是只是用来处理通讯(communication)操作。
它的case可以是send语句,也可以是receive语句,亦或者default。
receive语句可以将值赋值给一个或者两个变量。它必须是一个receive操作。
最多允许有一个default case,它可以放在case列表的任何位置,尽管我们大部分会将它放在最后。

import "fmt"
func fibonacci(c, quit chan int) {
    x, y := 0, 1
    for {
        select {
        case c <- x:
            x, y = y, x+y
        case <-quit:
            fmt.Println("quit")
            return
        }
    }
}
func main() {
    c := make(chan int)
    quit := make(chan int)
    go func() {
        for i := 0; i < 10; i++ {
            fmt.Println(<-c)
        }
        quit <- 0
    }()
    fibonacci(c, quit)
}

如果有同时多个case去处理,比如同时有多个channel可以接收数据,那么Go会伪随机的选择一个case处理(pseudo-random)。如果没有case需要处理,则会选择default去处理,如果default case存在的情况下。如果没有default case,则select语句会阻塞,直到某个case需要处理。

需要注意的是,nil channel上的操作会一直被阻塞,如果没有default case,只有nil channel的select会一直被阻塞。

select语句和switch语句一样,它不是循环,它只会选择一个case来处理,如果想一直处理channel,你可以在外面加一个无限的for循环:

for {
    select {
    case c <- x:
        x, y = y, x+y
    case <-quit:
        fmt.Println("quit")
        return
    }
}

timeout
select有很重要的一个应用就是超时处理。 因为上面我们提到,如果没有case需要处理,select语句就会一直阻塞着。这时候我们可能就需要一个超时操作,用来处理超时的情况。
下面这个例子我们会在2秒后往channel c1中发送一个数据,但是select设置为1秒超时,因此我们会打印出timeout 1,而不是result 1。

import "time"
import "fmt"
func main() {
    c1 := make(chan string, 1)
    go func() {
        time.Sleep(time.Second * 2)
        c1 <- "result 1"
    }()
    select {
    case res := <-c1:
        fmt.Println(res)
    case <-time.After(time.Second * 1):
        fmt.Println("timeout 1")
    }
}

其实它利用的是time.After方法,它返回一个类型为<-chan Time的单向的channel,在指定的时间发送一个当前时间给返回的channel中。

Timer和Ticker
我们看一下关于时间的两个Channel。
timer是一个定时器,代表未来的一个单一事件,你可以告诉timer你要等待多长时间,它提供一个Channel,在将来的那个时间那个Channel提供了一个时间值。下面的例子中第二行会阻塞2秒钟左右的时间,直到时间到了才会继续执行。

timer1 := time.NewTimer(time.Second * 2)
<-timer1.C
fmt.Println("Timer 1 expired")

当然如果你只是想单纯的等待的话,可以使用time.Sleep来实现。

你还可以使用timer.Stop来停止计时器。

timer2 := time.NewTimer(time.Second)
go func() {
    <-timer2.C
    fmt.Println("Timer 2 expired")
}()
stop2 := timer2.Stop()
if stop2 {
    fmt.Println("Timer 2 stopped")
}

ticker是一个定时触发的计时器,它会以一个间隔(interval)往Channel发送一个事件(当前时间),而Channel的接收者可以以固定的时间间隔从Channel中读取事件。下面的例子中ticker每500毫秒触发一次,你可以观察输出的时间。

ticker := time.NewTicker(time.Millisecond * 500)
go func() {
    for t := range ticker.C {
        fmt.Println("Tick at", t)
    }
}()

类似timer, ticker也可以通过Stop方法来停止。一旦它停止,接收者不再会从channel中接收数据了。

close
内建的close方法可以用来关闭channel。

func TestClose(t *testing.T) {
    go func() {
        time.Sleep(time.Hour)
    }()
    c := make(chan int, 10)
    c <- 1
    c <- 2
    close(c)
    c <- 3
}

但是从这个关闭的channel中不但可以读取出已发送的数据,还可以不断的读取零值:

c := make(chan int, 10)
c <- 1
c <- 2
close(c)
fmt.Println(<-c) //1
fmt.Println(<-c) //2
fmt.Println(<-c) //0
fmt.Println(<-c) //0

但是如果通过range读取,channel关闭后for循环会跳出:

c := make(chan int, 10)
c <- 1
c <- 2
close(c)
for i := range c {
    fmt.Println(i)
}

通过i, ok := <-c可以查看Channel的状态,判断值是零值还是正常读取的值。

c := make(chan int, 10)
close(c)
i, ok := <-c
fmt.Printf("%d, %t", i, ok) //0, false

同步
channel可以用在goroutine之间的同步。
下面的例子中main goroutine通过done channel等待worker完成任务。 worker做完任务后只需往channel发送一个数据就可以通知main goroutine任务完成。

import (
    "fmt"
    "time"
)

func worker(done chan bool) {
    time.Sleep(time.Second)
    // 通知任务已完成
    done <- true
}

func main() {
    done := make(chan bool, 1)
    go worker(done)
    // 等待任务完成
    <-done
}

限制最大并发数

// 最大并发数为 2
limits := make(chan struct{}, 2)
for i := 0; i < 10; i++ {
    go func() {
        // 缓冲区满了就会阻塞在这
        limits <- struct{}{}
        do()
        <-limits
    }()
}

总结一下channel关闭后sender的receiver操作。
如果channel c已经被关闭,继续往它发送数据会导致panic: send on closed channel:

小结:
同步模式下,必须要使发送方和接收方配对,操作才会成功,否则会被阻塞;异步模式下,缓冲槽要有剩余容量,操作才会成功,否则也会被阻塞。

简单来说,CSP 模型由并发执行的实体(线程或者进程或者协程)所组成,实体之间通过发送消息进行通信,这里发送消息时使用的就是通道,或者叫 channel。

CSP 模型的关键是关注channel,而不关注发送消息的实体。Go 语言实现了CSP 部分理论,goroutine 对应 CSP 中并发执行的实体,channel 也就对应着 CSP 中的 channel。

参考资料

Go语言的CSP模型
Go Channel 详解


一曲长歌一剑天涯
3 声望3 粉丝