参考极客时间
image.png
image.png
image.png
image.png
顺序存储
image.png
二叉树的遍历
image.png

前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)
 
中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)
 
后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r
void preOrder(Node* root) {
  if (root == null) return;
  print root // 此处为伪代码,表示打印 root 节点
  preOrder(root->left);
  preOrder(root->right);
}
 
void inOrder(Node* root) {
  if (root == null) return;
  inOrder(root->left);
  print root // 此处为伪代码,表示打印 root 节点
  inOrder(root->right);
}
 
void postOrder(Node* root) {
  if (root == null) return;
  postOrder(root->left);
  postOrder(root->right);
  print root // 此处为伪代码,表示打印 root 节点
}

二叉查找树查找

public class BinarySearchTree {
  private Node tree;
 
  public Node find(int data) {
    Node p = tree;
    while (p != null) {
      if (data < p.data) p = p.left;
      else if (data > p.data) p = p.right;
      else return p;
    }
    return null;
  }
 
  public static class Node {
    private int data;
    private Node left;
    private Node right;
 
    public Node(int data) {
      this.data = data;
    }
  }
}

二叉查找树插入

public void insert(int data) {
  if (tree == null) {
    tree = new Node(data);
    return;
  }
 
  Node p = tree;
  while (p != null) {
    if (data > p.data) {
      if (p.right == null) {
        p.right = new Node(data);
        return;
      }
      p = p.right;
    } else { // data < p.data
      if (p.left == null) {
        p.left = new Node(data);
        return;
      }
      p = p.left;
    }
  }
}

二叉查找树的删除操作

第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如图中的删除节点 55。

第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删除节点 13。

第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。
image.png

public void delete(int data) {
  Node p = tree; // p 指向要删除的节点,初始化指向根节点
  Node pp = null; // pp 记录的是 p 的父节点
  while (p != null && p.data != data) {
    pp = p;
    if (data > p.data) p = p.right;
    else p = p.left;
  }
  if (p == null) return; // 没有找到
 
  // 要删除的节点有两个子节点
  if (p.left != null && p.right != null) { // 查找右子树中最小节点
    Node minP = p.right;
    Node minPP = p; // minPP 表示 minP 的父节点
    while (minP.left != null) {
      minPP = minP;
      minP = minP.left;
    }
    p.data = minP.data; // 将 minP 的数据替换到 p 中
    p = minP; // 下面就变成了删除 minP 了
    pp = minPP;
  }
 
  // 删除节点是叶子节点或者仅有一个子节点
  Node child; // p 的子节点
  if (p.left != null) child = p.left;
  else if (p.right != null) child = p.right;
  else child = null;
 
  if (pp == null) tree = child; // 删除的是根节点
  else if (pp.left == p) pp.left = child;
  else pp.right = child;
}

为什么说堆排序没有快速排序快
1、堆排序数据访问的方式没有快速排序友好
2、对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序

图存储方式:
邻接表存储方法
image.png
广度优先搜索(BFS)
image.png

public void bfs(int s, int t) {
  if (s == t) return;
  boolean[] visited = new boolean[v];
  visited[s]=true;
  Queue<Integer> queue = new LinkedList<>();
  queue.add(s);
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  while (queue.size() != 0) {
    int w = queue.poll();
   for (int i = 0; i < adj[w].size(); ++i) {
      int q = adj[w].get(i);
      if (!visited[q]) {
        prev[q] = w;
        if (q == t) {
          print(prev, s, t);
          return;
        }
        visited[q] = true;
        queue.add(q);
      }
    }
  }
}
 
private void print(int[] prev, int s, int t) { // 递归打印 s->t 的路径
  if (prev[t] != -1 && t != s) {
    print(prev, s, prev[t]);
  }
  System.out.print(t + " ");
}

image.png
深度优先搜索(DFS)
image.png

boolean found = false; // 全局变量或者类成员变量
 
public void dfs(int s, int t) {
  found = false;
  boolean[] visited = new boolean[v];
  int[] prev = new int[v];
  for (int i = 0; i < v; ++i) {
    prev[i] = -1;
  }
  recurDfs(s, t, visited, prev);
  print(prev, s, t);
}
 
private void recurDfs(int w, int t, boolean[] visited, int[] prev) {
  if (found == true) return;
  visited[w] = true;
  if (w == t) {
    found = true;
    return;
  }
  for (int i = 0; i < adj[w].size(); ++i) {
    int q = adj[w].get(i);
    if (!visited[q]) {
      prev[q] = w;
      recurDfs(q, t, visited, prev);
    }
  }
}

b+树
image.png

每个节点中子节点的个数不能超过 m,也不能小于 m/2;

根节点的子节点个数可以不超过 m/2,这是一个例外;

m 叉树只存储索引,并不真正存储数据,这个有点儿类似跳表;

通过链表将叶子节点串联在一起,这样可以方便按区间查找;

一般情况,根节点会被存储在内存中,其他节点存储在磁盘中。

树的高度也只是 3,最多只要 3 次磁盘 IO 就能获取到数据。磁盘 IO 变少了,查找数据的效率也就提高了。

B 树跟 B+ 树的不同点主要集中在这几个地方

B+ 树中的节点不存储数据,只是索引,而 B 树中的节点存储数据;

B 树中的叶子节点并不需要链表来串联。

B 树只是一个每个节点的子节点个数不能小于 m/2 的 m 叉树。

B树的优点在于数据存储在每个结点中,可以更快访问到,而不必须走到叶子结点,B树更多的用在文件系统中。

B+树的每个非叶子结点都只充当索引,所以查询必须到叶子结点结束,但它十分适合“扫库”和区间查找,而且因为大多结点只用于索引,所以并不会存储真正的数据,在内存上会更紧凑,相同的内存就可以存放更多的索引数据了。比如字典的拼音和汉字是分离的,只需要几十页就能得到完整的拼音表,但是如果拼音和汉字掺杂在一起,要得到完整的索引(拼音)表就需要整个字典。

B树结构
image.png


微笑的死神
0 声望0 粉丝