头图

前言

哈喽,大家好,我是asong。今天与大家分享一下Go标准库sort.Search是如何实现二分查找的,为什么突然想到分享这个函数呢。起因是这周在刷leetcode的一道题时,需要使用到二分查找,最开始是自己实现了一版,后面就想Go语言标准库这么全,应该会有这个封装,果然被我找到了,顺便看了一下他是怎么实现的,感觉挺有意思的,就赶紧来分享一下。

小声逼逼一下,最近有读者反馈说最近发文不够频繁,在这里同步一下我最近干什么:

  1. 工作太忙了
  2. 正在写一个本地缓存,后面会分享出来
  3. 正在筹备我的第一个开源项目,敬请期待

什么是二分查找

以下来自百度百科:

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

总结一下,使用二分查找必须要符合两个要求:

  • 必须采用顺序存储结构
  • 必须按关键字大小有序排列

我们来举个例子,就很容易理解了,就拿我和我女朋友的聊天内容做个例子吧:

我家宝宝每次买一件新衣服,就会习惯性的问我一句,小松子,来猜一猜我这次花了多少钱?

小松子:50?

臭宝:你埋汰我呢?欠打!

小松子:500?

臭宝:你当我是富婆呢?能不能有点智商!

小松子:250?

臭宝:我感觉你在骂我,可我还没有证据。少啦,少啦!!!

小松子:哎呀,好难猜呀,290?

臭宝:啊!你这臭男人,就是在骂我!气死啦,气死啦!多啦,多啦!

小松子:难道是260?

臭宝:哎呦,挺厉害呀,竟然猜对了!

后面对话内容就省略啦.....

这里我只需要5次就成功猜出来了,这就是二分查找的思想,每一次猜测,我们都选取一段整数范围的中位数,根据条件帮我们逐步缩小范围,每一次都以让剩下的选择范围缩小一半,效率提高。

  • 二分查找的时间复杂度

二分查找每次把搜索区域减少一半,时间复杂度为O(logn)。(n代表集合中元素的个数)。

空间复杂度为O(1)。

自己实现一个二分查找

二分算法的实现还是比较简单的,可以分两种方式实现:递归和非递归方式实现,示例代码如下:

非递归方式实现:

// 二分查找非递归实现
func binarySearch(target int64, nums []int64) int {
   left := 0
   right := len(nums)
   for left <= right {
      mid := left + (right - left) / 2
      if target == nums[mid] {
         return mid
      }
      if target > nums[mid] {
         left = mid + 1
         continue
      }
      if target < nums[mid] {
         right = mid - 1
         continue
      }
   }
   return -1
}

总体思路很简单,每次我们都选取一段整数范围的中位数,然后根据条件让剩下的选择范围缩小一半。这里有一个要注意的点就是我们在获取中位数时使用的写法是 mid := left + (right - left) / 2,而不是mid = (left +right)/2的写法,这是因为后者有可能会造成位数的溢出,也就会导致结果出问题。

递归方式实现:

func Search(nums []int64, target int64) int {
    return binarySearchRecursive(target, nums, 0, len(nums))
}

func binarySearchRecursive(target int64, nums []int64, left, right int) int {
    if left > right {
        return -1
    }

    mid := left + (right - left) / 2

    if target == nums[mid] {
        return mid
    }
    if nums[mid] < target {
        return binarySearchRecursive(target, nums, mid+1, right)
    }
    if nums[mid] > target {

        return binarySearchRecursive(target, nums, left, mid-1)
    }
    return -1

}

Go标准库是如何实现二分查找的?

我们先看一下标准库中的代码实现:

func Search(n int, f func(int) bool) int {
    // Define f(-1) == false and f(n) == true.
    // Invariant: f(i-1) == false, f(j) == true.
    i, j := 0, n
    for i < j {
        h := int(uint(i+j) >> 1) // avoid overflow when computing h
        // i ≤ h < j
        if !f(h) {
            i = h + 1 // preserves f(i-1) == false
        } else {
            j = h // preserves f(j) == true
        }
    }
    // i == j, f(i-1) == false, and f(j) (= f(i)) == true  =>  answer is i.
    return i
}

初一看,与我们上面的实现一点也不同呢,我们来分析一下。

入参n就是代表要查找序列的长度,入参f就是我们自定义的条件。这段代码很短,大概思路就是:

  • 定义好这段序列的开始、结尾的位置
  • 使用位移操作获取中位数,这样能更好的避免溢出
  • 然后根据我们传入的条件判断是否符合条件,逐渐缩小范围

这段代码与我实现的不同在于,它并不是在用户传入的比较函数f返回true就结束查找,而是继续在当前[i, j)区间的前半段查找,并且,当ffalse时,也不比较当前元素与要查找的元素的大小关系,而是直接在后半段查找。所以for循环退出的唯一条件就是i>=j,如果我们这样使用,就会出现问题:

func main() {
    nums := []int64{1, 2, 3, 4, 5, 6, 7}
    fmt.Println(sort.Search(len(nums), func(i int) bool{
        return nums[i] == 1
    }))
}

运行结果竟然是7,而不是1,如果我们把条件改成return nums[i] >=1,运行结果就对了。这是因为我们传入的条件并不是让用户确认目标条件,这里的思想是让我们逐步缩小范围,通过这个条件,我们每次都可以缩小范围,说的有点饶,就上面的代码举个例子。现在是一个升序数组,我们要找的数值是1,我们传入的条件是return nums[i]>=1,第一进入函数Search,我们获取中的中位数h3,当前元素是大于目标数值的,所以我们只能在前半段查找,就是这样不断缩小范围,找到我们最终的那个数值,如果当前序列中没有我们要找的目标数值,那么就会返回我们可以插入的位置,也就是最后一位元素的坐标+1的位置。

这个逻辑说实话,我也是第一次接触,仔细思考了一下,这种实现还是有一些优点的:

  • 使用移位操作,避免因为i+j太大而造成的溢出
  • 如果我们查找序列中有多个元素相等时,且我们要找的元素就是这个时,我们总会找到下标最小的那个元素
  • 如果我们没找到要找的目标元素时,返回的下标是我们可插入的位置,我们在进行数据插入时,依然可以保证数据的有序

注意:使用sort.Search时,入参条件是根据要查找的序列是升序序列还是降序序列来决定的,如果是升序序列,则传入的条件应该是>=目标元素值,如果是降序序列,则传入的条件应该是<=目标元素值

解析int(uint(i+j) >> 1)这段代码

这里我想单独解析一下这段代码,因为很少见,所以可以当作一个知识点记一下。这里使用到的是移位操作,通过向右移动一位,正好可以得到/2的结果。具体什么原因呢,我画了一个图,手工画的,看完你就懂了:

懂了吧,兄弟们!移位实现要比乘除发的效率高很多,我们在平常开发中可以使用这种方式来提升效率。

这里还有一个点就是使用uint数据类型,因为uint的数据范围是2^3204294967295。使用uint可以避免因为i+j太大而造成的溢出。

总结

好啦,今天的文章到这里就结束了,最后我想说的是,没事大家可以专研一下Go标准库中的一些方法是怎样实现的,好的思想我们要借鉴过来。如果我们在面试中使用这种方式写出二分查找,那得到的offer的几率不就又增加了嘛~。

素质三连(分享、点赞、在看)都是笔者持续创作更多优质内容的动力!我是asong,我们下期见。

创建了一个Golang学习交流群,欢迎各位大佬们踊跃入群,我们一起学习交流。入群方式:关注公众号获取。更多学习资料请到公众号领取。

推荐往期文章:


asong
605 声望907 粉丝