1 设计模式七大原则
设计模式原则,其实就是程序员在编程时,应当遵守的原则,也是各种设计模式的基础(即:设计模式为什么这样设计的依据)
设计模式常用的七大原则有:
- 单一职责原则
- 接口隔离原则
- 依赖倒转(倒置)原则
- 里氏替换原则
- 开闭原则(OCP)
- 迪米特法则
- 合成复用原则
2 单一职责原则
单一职责原则(Single Responsibility Principle)
2.1 基本介绍
对类来说的,即一个类应该只负责一项职责。如类 A 负责两个不同职责:职责 1,职责 2。当职责 1 需求变更而改变 A 时,可能造成职责 2 执行错误,所以需要将类 A 的粒度分解为 A1,A2。
2.2 应用实例
以交通工具案例讲解。
public class SingleResponsibility {
public static void main(String[] args) {
Vehicle vehicle = new Vehicle();
vehicle.run("摩托车");
vehicle.run("汽车");
vehicle.run("飞机");
}
}
/**
* 交通工具类
* 1. 在此方式 的 run 方法中,违反了单一职责原则
* 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
*/
class Vehicle {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
}
解决方法1:
/**
* 方案 1 的分析
* 1. 遵守单一职责原则
* 2. 但是这样做的改动很大,即将类分解,同时修改客户端
* 3. 改进:直接修改 Vehicle 类,改动的代码会比较少=>方案 2
*/
public class SingleResponsibility {
public static void main(String[] args) {
RoadVehicle roadVehicle = new RoadVehicle();
roadVehicle.run("摩托车");
roadVehicle.run("汽车");
AirVehicle airVehicle = new AirVehicle();
airVehicle.run("飞机");
}
}
class RoadVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "公路运行");
}
}
class AirVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "天空运行");
}
}
class WaterVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "水中运行");
}
}
解决方法2:
/**
* 方案2
* 1. 这种修改方法没有对原来的类做大的修改,只是增加方法
* 2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责(推荐是在类级别上的单一职责)
*/
public class SingleResponsibility {
public static void main(String[] args) {
Vehicle vehicle2 = new Vehicle();
vehicle2.run("汽车");
vehicle2.runWater("轮船");
vehicle2.runAir("飞机");
}
}
class Vehicle {
public void run(String vehicle) {
//处理
System.out.println(vehicle + " 在公路上运行....");
}
public void runAir(String vehicle) {
System.out.println(vehicle + " 在天空上运行....");
}
public void runWater(String vehicle) {
System.out.println(vehicle + " 在水中行....");
}
}
2.3 单一职责原则注意事项和细节
- 降低类的复杂度,一个类只负责一项职责。
- 提高类的可读性,可维护性。
- 降低变更引起的风险。
- 通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则
单一职责原则是相对的,要保持一个类的相对的职责单一。若类的复杂性不高,可适当违反单一职责原则。在实际开发者能不用if else if else if 复杂的分支就尽量不用,采用类进行替代。
3 接口隔离原则
接口隔离原则(Interface Segregation Principle)
3.1 基本介绍
- 客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上。
- 先看一张图:
- 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
- 按隔离原则应当这样处理:
将接口 Interface1 拆分为独立的几个接口(这里我们拆分成 3 个接口),类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则。
3.2 应用实例
- 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,请编写代码完成此应用实例。
- 看代码-没有使用接口隔离原则代码。
public class Segregation1 {
public static void main(String[] args) {
}
}
//接口
interface Interface1 {
void operation1();
void operation2();
void operation3();
void operation4();
void operation5();
}
class B implements Interface1 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
public void operation4() {
System.out.println("B 实现了 operation4");
}
public void operation5() {
System.out.println("B 实现了 operation5");
}
}
class D implements Interface1 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation2() {
System.out.println("D 实现了 operation2");
}
public void operation3() {
System.out.println("D 实现了 operation3");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { //A 类通过接口 Interface1 依赖(使用) B 类,但是只会用到 1,2,3 方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface1 i) {
i.operation2();
}
public void depend3(Interface1 i) {
i.operation3();
}
}
class C { //C 类通过接口 Interface1 依赖(使用) D 类,但是只会用到 1,4,5 方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface1 i) {
i.operation4();
}
public void depend5(Interface1 i) {
i.operation5();
}
}
解决办法:
public class Segregation2 {
public static void main(String[] args) {
// 使用一把
A a = new A();
a.depend1(new B()); // A 类通过接口去依赖 B 类
a.depend2(new B());
a.depend3(new B());
C c = new C();
c.depend1(new D()); // C 类通过接口去依赖(使用)D 类
c.depend4(new D());
c.depend5(new D());
}
}
// 接 口 1
interface Interface1 {
void operation1();
}
// 接 口 2
interface Interface2 {
void operation2();
void operation3();
}
// 接 口 3
interface Interface3 {
void operation4();
void operation5();
}
class B implements Interface1, Interface2 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
}
class D implements Interface1, Interface3 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
// A 类通过接口 Interface1,Interface2 依赖(使用) B 类,但是只会用到 1,2,3 方法
class A {
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface2 i) {
i.operation2();
}
public void depend3(Interface2 i) {
i.operation3();
}
}
// C 类通过接口 Interface1,Interface3 依赖(使用) D 类,但是只会用到 1,4,5 方法
class C {
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface3 i) {
i.operation4();
}
public void depend5(Interface3 i) {
i.operation5();
}
}
3.3 使用接口隔离原则改进
- 类 A 通过接口 Interface1 依赖类 B,类 C 通过接口 Interface1 依赖类 D,如果接口 Interface1 对于类 A 和类 C来说不是最小接口,那么类 B 和类 D 必须去实现他们不需要的方法。
- 将接口 Interface1 拆分为独立的几个接口,类 A 和类 C 分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则接口 Interface1 中出现的方法,根据实际情况拆分为三个接口。
4 依赖倒转原则
4.1 基本介绍
依赖倒转原则(Dependence Inversion Principle)是指:
- 高层模块不应该依赖低层模块,二者都应该依赖其抽象。
- 抽象不应该依赖细节,细节应该依赖抽象。依赖接口而不是实现。
- 依赖倒转(倒置)的中心思想是面向接口编程 。
- 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在 java 中,抽象指的是接口或抽象类,细节就是具体的实现类。
- 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成。接口和抽象类的价值在于设计。
4.2 应用实例
请编程完成 Person 接收消息的功能。
实现方式:
public class DependencyInversion {
public static void main(String[] args) {
Person person = new Person();
person.receive(new Email());
}
}
class Email {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
/**
* 完成 Person 接收消息的功能
* 方式 1 分析
* 1. 简单,比较容易想到
* 2. 如果我们获取的对象是 微信,短信等等,则新增类,同时 Person 也要增加相应的接收方法
* 3. 解决思路:引入一个抽象的接口 IReceiver, 表示接收者, 这样 Person 类与接口 IReceiver 发生依赖
* 因为 Email, WeiXin 等等属于接收的范围,他们各自实现 IReceiver 接口就 ok, 这样我们就符号依赖倒转原则
*/
class Person {
public void receive(Email email) {
System.out.println(email.getInfo());
}
}
优化(依赖倒转):
public class DependencyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person();
person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver {
String getInfo();
}
class Email implements IReceiver {
public String getInfo() {
return "电子邮件信息: hello,world";
}
}
//增加微信
class WeiXin implements IReceiver {
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式 2
class Person {
//这里我们是对接口的依赖,而不是直接依赖实现类。
public void receive(IReceiver receiver) {
System.out.println(receiver.getInfo());
}
}
4.3 依赖倒转原则的注意事项和细节
- 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好。
- 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化。
- 继承时遵循里氏替换原则。
4.4 依赖关系传递的三种方式
1)接口传递;2)构造方法传递;3)setter方法传递;
public class DependencyPass {
public static void main(String[] args) {
// 通过接口传递
ChangHong changHong1 = new ChangHong();
OpenAndClose openAndClose1 = new OpenAndClose();
openAndClose1.open(changHong1);
//通过构造器进行依赖传递
OpenAndClose2 openAndClose = new OpenAndClose2(changHong1);
openAndClose.open();
//通过 setter 方法进行依赖传递
OpenAndClose3 openAndClose3 = new OpenAndClose3();
openAndClose3.setTv(changHong1);
openAndClose.open();
}
}
// 方式 1: 通过接口传递实现依赖
// 开关的接口
interface IOpenAndClose {
//抽象方法,接收接口
void open(ITV tv);
}
interface ITV { //ITV 接口
void play();
}
class ChangHong implements ITV {
@Override
public void play() {
System.out.println("长虹电视机,打开");
}
}
// 实现接口
class OpenAndClose implements IOpenAndClose {
@Override
public void open(ITV tv) {
tv.play();
}
}
// 方式 2: 通过构造方法依赖传递
// 开关的接口
interface IOpenAndClose2 {
//抽象方法,接收接口
void open();
}
class OpenAndClose2 implements IOpenAndClose2 {
public ITV tv; //成员
public OpenAndClose2(ITV tv) { //构造器
this.tv = tv;
}
@Override
public void open() {
this.tv.play();
}
}
// 方式 3 ,通过 setter 方法传递
interface IOpenAndClose3 {
void open();
void setTv(ITV tv);
}
class OpenAndClose3 implements IOpenAndClose3 {
private ITV tv;
@Override
public void setTv(ITV tv) {
this.tv = tv;
}
@Override
public void open() {
this.tv.play();
}
}
5 里氏替换原则
5.1 OO中的继承性的思考和说明
- 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
- 继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障。
- 问题提出:在编程中,如何正确的使用继承? => 里氏替换原则
5.2 基本介绍
- 里氏替换原则(Liskov Substitution Principle)在 1988 年,由麻省理工学院的以为姓里的女士提出的。
- 如果对每个类型为 T1 的对象 o1,都有类型为 T2 的对象 o2,使得以 T1 定义的所有程序 P 在所有的对象 o1 都代换成 o2 时,程序 P 的行为没有发生变化,那么类型 T2 是类型 T1 的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
- 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法。
- 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题。
5.3 一个程序引出的问题和思考
看个程序, 思考下问题和解决思路:
public class Liskov {
public static void main(String[] args) {
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
//这里本意是求出 11-3
System.out.println("11-3=" + b.func1(11, 3));
// 1-8 System.out.println("11+3+9=" + b.func2(11, 3));
System.out.println("1-8=" + b.func1(1, 8));
}
}
// A 类
class A {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B 类继承了 A
class B extends A {
//这里,重写了 A 类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
// 增加了一个新功能:完成两个数相加,然后和 9 求和
public int func2(int a, int b) {
return func1(a, b) + 9;
}
}
5.4 解决方法
- 我们发现原来运行正常的相减功能发生了错误。原因就是类 B 无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候。
- 通用的做法是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替。
- 改进方案:
代码实现:
public class Liskov {
public static void main(String[] args) {
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
//因为 B 类不再继承 A 类,因此调用者,不会再 func1 是求减法。调用完成的功能就会很明确
//这里本意是求出 11+3
System.out.println("11+3=" + b.func1(11, 3));
// 1+8 System.out.println("11+3+9=" + b.func2(11, 3));
System.out.println("1+8=" + b.func1(1, 8));
//使用组合仍然可以使用到 A 类相关方法
System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出 11-3
}
}
//创建一个更加基础的基类
class Base {
//把更加基础的方法和成员写到 Base 类
}
// A 类
class A extends Base {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B 类继承了 A
// 增加了一个新功能:完成两个数相加,然后和 9 求和
class B extends Base {
//如果 B 需要使用 A 类的方法,使用组合关系
private A a = new A();
//这里,重写了 A 类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
//我们仍然想使用 A 的方法
public int func3(int a, int b) {
return this.a.func1(a, b);
}
}
6 开闭原则
6.1 基本介绍
- 开闭原则(Open Closed Principle)是编程中最基础、最重要的设计原则。
- 一个软件实体如类,模块和函数应该对扩展开放(对提供方来说),对修改关闭(对使用方来说)。用抽象构建框架,用实现扩展细节。(在提供方扩展或者修改代码是,使用方不需要修改,可以理解为兼容)。
- 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
- 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。
6.2 看下面一段代码
- 看一个画图形的功能。类图设计,如下:
- 代码演示
public class Ocp {
public static void main(String[] args) {
// 使用看看存在的问题。之前提供 Rectangle、Circle,但是新增Triangle 必须要修改代码
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收 Shape 对象,然后根据 type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1)
drawRectangle(s);
else if (s.m_type == 2)
drawCircle(s);
else if (s.m_type == 3)
drawTriangle(s);
}
//绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}
//绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
}
//绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}
//Shape 类,基类
class Shape {
int m_type;
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}
6.3 方式 1 的优缺点
- 优点是比较好理解,简单易操作。
- 缺点是违反了设计模式的 ocp 原则,即对扩展开放(对提供方来说),对修改关闭(对使用方来说)。即当我们给类增加新功能的时候,尽量不修改代码,或者尽可能少修改代码。
- 比如我们这时要新增加一个图形种类 三角形,我们需要做如下修改,修改的地方较多
6.4 改进的思路分析
思路:把创建 Shape 类做成抽象类,并提供一个抽象的 draw 方法,让子类去实现即可,这样我们有新的图形种类时,只需要让新的图形类继承 Shape,并实现 draw 方法即可,使用方的代码就不需要修 -> 满足了开闭原则。
改进后的代码:
public class Ocp {
public static void main(String[] args) {
// 使用看看存在的问题。之前提供 Rectangle、Circle,但是新增Triangle 必须要修改代码
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
//这是一个用于绘图的类 [使用方]
class GraphicEditor {
//接收 Shape 对象,调用 draw 方法
public void drawShape(Shape s) {
s.draw();
}
}
//Shape 类,基类
abstract class Shape {
int m_type;
public abstract void draw();//抽象方法
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
@Override
public void draw() {
System.out.println(" 绘制矩形 ");
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
@Override
public void draw() {
System.out.println(" 绘制圆形 ");
}
}
//新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
@Override
public void draw() {
System.out.println(" 绘制三角形 ");
}
}
//新增一个图形
class OtherGraphic extends Shape {
OtherGraphic() {
super.m_type = 4;
}
@Override
public void draw() {
System.out.println(" 绘制其它图形 ");
}
}
7 迪米特法则
7.1 基本介绍
- 一个对象应该对其他对象保持最少的了解。
- 类与类关系越密切,耦合度越大。
- 迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的 public 方法,不对外泄露任何信息。
- 迪米特法则还有个更简单的定义:只与直接的朋友通信。
- 直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
7.2 应用实例
- 有一个学校,下属有各个学院和总部,现要求打印出学校总部员工 ID 和学院员工的 id。
- 编程实现上面的功能, 看代码演示
- 代码演示:
public class Demeter {
public static void main(String[] args) {
// 创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
// 输出学院的员工 id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
// 学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<>();
//这里我们增加了 10 个员工到 list
for (int i = 0; i < 10; i++) {
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工 id= " + i);
list.add(emp);
}
return list;
}
}
/**
* 学校管理类
* 分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
* CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
*/
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<>();
//这里我们增加了 5 个员工到 list
for (int i = 0; i < 5; i++) {
Employee emp = new Employee();
emp.setId("学校总部员工 id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
/**
* 分析问题
* 1. 这 里 的 CollegeEmployee 不是 SchoolManager 的直接朋友
* 2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
* 3. 违反了 迪米特法则
*/
//获取到学院员工
List<CollegeEmployee> list1 = sub.getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
7.3 应用实例改进
- 前面设计的问题在于 SchoolManager 中,CollegeEmployee 类并不是 SchoolManager 类的直接朋友 (分析)。
- 按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合。
- 对代码按照迪米特法则 进行改进.
- 代码演示:
public class Demeter {
public static void main(String[] args) {
// 创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
// 输出学院的员工 id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
//学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
//学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
// 学院员工的管理类
class CollegeManager {
//返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<>();
//这里我们增加了 10 个员工到 list
for (int i = 0; i < 10; i++) {
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工 id= " + i);
list.add(emp);
}
return list;
}
// 输 出 学 院 员 工 的 信 息
public void printEmployee() {
//获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}
/**
* 学校管理类
* 分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
* CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
*/
class SchoolManager {
//返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<>();
//这里我们增加了 5 个员工到 list
for (int i = 0; i < 5; i++) {
Employee emp = new Employee();
emp.setId("学校总部员工 id= " + i);
list.add(emp);
}
return list;
}
//该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
/**
* 分析问题
* 1. 将输出逻辑写到 CollegeManager 类中,降低耦合性,这样SchoolManager 就不用感知依赖类的逻辑。
*/
sub.printEmployee();
//获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
7.4 迪米特法则注意事项和细节
- 迪米特法则的核心是降低类之间的耦合
- 但是注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系
8 合成复用原则(Composite Reuse Principle)
8.1 基本介绍
原则是尽量使用合成/聚合的方式,而不是使用继承。
如果只是让B类去使用A类的方法,使用继承就会让B和A的耦合性增强。
通过以下三种方式替代继承:1)依赖(合成)方式:可以在B类新建一个方法,把A实例传进来,然后调用A的方法。2)聚合方式:可以在B类增加全局变量,并通过set方法赋值;3)组合方式:在B的全局变量中,直接new 一个A对象,把A直接组合到B中。
9 设计原则核心思想
- 找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
- 针对接口编程,而不是针对实现编程。
- 为了交互对象之间的松耦合设计而努力。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。