Introduction
The DF data type in pandas can be groupby operated like a database table. Generally speaking, the groupby operation can be divided into three parts: split data, apply transformation and merge data.
This article will explain in detail the groupby operation in Pandas.
Split data
The purpose of dividing data is to divide DF into groups. In order to perform groupby operations, you need to specify the corresponding label when creating the DF:
df = pd.DataFrame(
...: {
...: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
...: "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
...: "C": np.random.randn(8),
...: "D": np.random.randn(8),
...: }
...: )
...:
df
Out[61]:
A B C D
0 foo one -0.490565 -0.233106
1 bar one 0.430089 1.040789
2 foo two 0.653449 -1.155530
3 bar three -0.610380 -0.447735
4 foo two -0.934961 0.256358
5 bar two -0.256263 -0.661954
6 foo one -1.132186 -0.304330
7 foo three 2.129757 0.445744
By default, the axis of groupby is the x axis. There can be one group or multiple groups:
In [8]: grouped = df.groupby("A")
In [9]: grouped = df.groupby(["A", "B"])
Multi index
In the 0.24 version, if we have multiple indexes, we can select a specific index to group:
In [10]: df2 = df.set_index(["A", "B"])
In [11]: grouped = df2.groupby(level=df2.index.names.difference(["B"]))
In [12]: grouped.sum()
Out[12]:
C D
A
bar -1.591710 -1.739537
foo -0.752861 -1.402938
get_group
get_group can get the data after grouping:
In [24]: df3 = pd.DataFrame({"X": ["A", "B", "A", "B"], "Y": [1, 4, 3, 2]})
In [25]: df3.groupby(["X"]).get_group("A")
Out[25]:
X Y
0 A 1
2 A 3
In [26]: df3.groupby(["X"]).get_group("B")
Out[26]:
X Y
1 B 4
3 B 2
dropna
By default, NaN data will be excluded from groupby. NaN data can be allowed by setting dropna=False:
In [27]: df_list = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]]
In [28]: df_dropna = pd.DataFrame(df_list, columns=["a", "b", "c"])
In [29]: df_dropna
Out[29]:
a b c
0 1 2.0 3
1 1 NaN 4
2 2 1.0 3
3 1 2.0 2
# Default ``dropna`` is set to True, which will exclude NaNs in keys
In [30]: df_dropna.groupby(by=["b"], dropna=True).sum()
Out[30]:
a c
b
1.0 2 3
2.0 2 5
# In order to allow NaN in keys, set ``dropna`` to False
In [31]: df_dropna.groupby(by=["b"], dropna=False).sum()
Out[31]:
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
groups attribute
The groupby object has a groups attribute, which is a key-value dictionary, the key is the data used for classification, and the value is the value corresponding to the classification.
In [34]: grouped = df.groupby(["A", "B"])
In [35]: grouped.groups
Out[35]: {('bar', 'one'): [1], ('bar', 'three'): [3], ('bar', 'two'): [5], ('foo', 'one'): [0, 6], ('foo', 'three'): [7], ('foo', 'two'): [2, 4]}
In [36]: len(grouped)
Out[36]: 6
index level
For multi-level index objects, groupby can specify the index level of the group:
In [40]: arrays = [
....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
....: ["one", "two", "one", "two", "one", "two", "one", "two"],
....: ]
....:
In [41]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"])
In [42]: s = pd.Series(np.random.randn(8), index=index)
In [43]: s
Out[43]:
first second
bar one -0.919854
two -0.042379
baz one 1.247642
two -0.009920
foo one 0.290213
two 0.495767
qux one 0.362949
two 1.548106
dtype: float64
Group first level:
In [44]: grouped = s.groupby(level=0)
In [45]: grouped.sum()
Out[45]:
first
bar -0.962232
baz 1.237723
foo 0.785980
qux 1.911055
dtype: float64
Group second level:
In [46]: s.groupby(level="second").sum()
Out[46]:
second
one 0.980950
two 1.991575
dtype: float64
group traversal
After getting the group object, we can traverse the group through the for statement:
In [62]: grouped = df.groupby('A')
In [63]: for name, group in grouped:
....: print(name)
....: print(group)
....:
bar
A B C D
1 bar one 0.254161 1.511763
3 bar three 0.215897 -0.990582
5 bar two -0.077118 1.211526
foo
A B C D
0 foo one -0.575247 1.346061
2 foo two -1.143704 1.627081
4 foo two 1.193555 -0.441652
6 foo one -0.408530 0.268520
7 foo three -0.862495 0.024580
If it is a multi-field group, the name of the group is a tuple:
In [64]: for name, group in df.groupby(['A', 'B']):
....: print(name)
....: print(group)
....:
('bar', 'one')
A B C D
1 bar one 0.254161 1.511763
('bar', 'three')
A B C D
3 bar three 0.215897 -0.990582
('bar', 'two')
A B C D
5 bar two -0.077118 1.211526
('foo', 'one')
A B C D
0 foo one -0.575247 1.346061
6 foo one -0.408530 0.268520
('foo', 'three')
A B C D
7 foo three -0.862495 0.02458
('foo', 'two')
A B C D
2 foo two -1.143704 1.627081
4 foo two 1.193555 -0.441652
Aggregation operation
After grouping, you can perform aggregation operations:
In [67]: grouped = df.groupby("A")
In [68]: grouped.aggregate(np.sum)
Out[68]:
C D
A
bar 0.392940 1.732707
foo -1.796421 2.824590
In [69]: grouped = df.groupby(["A", "B"])
In [70]: grouped.aggregate(np.sum)
Out[70]:
C D
A B
bar one 0.254161 1.511763
three 0.215897 -0.990582
two -0.077118 1.211526
foo one -0.983776 1.614581
three -0.862495 0.024580
two 0.049851 1.185429
For multi-index data, the default return value is also multi-index. If you want to use a new index, you can add as_index = False:
In [71]: grouped = df.groupby(["A", "B"], as_index=False)
In [72]: grouped.aggregate(np.sum)
Out[72]:
A B C D
0 bar one 0.254161 1.511763
1 bar three 0.215897 -0.990582
2 bar two -0.077118 1.211526
3 foo one -0.983776 1.614581
4 foo three -0.862495 0.024580
5 foo two 0.049851 1.185429
In [73]: df.groupby("A", as_index=False).sum()
Out[73]:
A C D
0 bar 0.392940 1.732707
1 foo -1.796421 2.824590
The above effect is equivalent to reset_index
In [74]: df.groupby(["A", "B"]).sum().reset_index()
grouped.size() calculates the size of the group:
In [75]: grouped.size()
Out[75]:
A B size
0 bar one 1
1 bar three 1
2 bar two 1
3 foo one 2
4 foo three 1
5 foo two 2
grouped.describe() describes the information of the group:
In [76]: grouped.describe()
Out[76]:
C ... D
count mean std min 25% 50% ... std min 25% 50% 75% max
0 1.0 0.254161 NaN 0.254161 0.254161 0.254161 ... NaN 1.511763 1.511763 1.511763 1.511763 1.511763
1 1.0 0.215897 NaN 0.215897 0.215897 0.215897 ... NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582
2 1.0 -0.077118 NaN -0.077118 -0.077118 -0.077118 ... NaN 1.211526 1.211526 1.211526 1.211526 1.211526
3 2.0 -0.491888 0.117887 -0.575247 -0.533567 -0.491888 ... 0.761937 0.268520 0.537905 0.807291 1.076676 1.346061
4 1.0 -0.862495 NaN -0.862495 -0.862495 -0.862495 ... NaN 0.024580 0.024580 0.024580 0.024580 0.024580
5 2.0 0.024925 1.652692 -1.143704 -0.559389 0.024925 ... 1.462816 -0.441652 0.075531 0.592714 1.109898 1.627081
[6 rows x 16 columns]
General polymerization method
The following are general aggregation methods:
function | description |
---|---|
mean() | average value |
sum() | Sum |
size() | Calculate size |
count() | group statistics |
std() | Standard deviation |
var() | variance |
sem() | Standard error of the mean |
describe() | Statistics description |
first() | The first group value |
last() | The last group value |
nth() | Nth group value |
min() | Minimum |
max() | Max |
Use multiple aggregation methods at the same time
You can specify multiple aggregation methods at the same time:
In [81]: grouped = df.groupby("A")
In [82]: grouped["C"].agg([np.sum, np.mean, np.std])
Out[82]:
sum mean std
A
bar 0.392940 0.130980 0.181231
foo -1.796421 -0.359284 0.912265
Can be renamed:
In [84]: (
....: grouped["C"]
....: .agg([np.sum, np.mean, np.std])
....: .rename(columns={"sum": "foo", "mean": "bar", "std": "baz"})
....: )
....:
Out[84]:
foo bar baz
A
bar 0.392940 0.130980 0.181231
foo -1.796421 -0.359284 0.912265
NamedAgg
NamedAgg can define the aggregation more precisely. It contains two customized fields, column and aggfunc.
In [88]: animals = pd.DataFrame(
....: {
....: "kind": ["cat", "dog", "cat", "dog"],
....: "height": [9.1, 6.0, 9.5, 34.0],
....: "weight": [7.9, 7.5, 9.9, 198.0],
....: }
....: )
....:
In [89]: animals
Out[89]:
kind height weight
0 cat 9.1 7.9
1 dog 6.0 7.5
2 cat 9.5 9.9
3 dog 34.0 198.0
In [90]: animals.groupby("kind").agg(
....: min_height=pd.NamedAgg(column="height", aggfunc="min"),
....: max_height=pd.NamedAgg(column="height", aggfunc="max"),
....: average_weight=pd.NamedAgg(column="weight", aggfunc=np.mean),
....: )
....:
Out[90]:
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
Or use a tuple directly:
In [91]: animals.groupby("kind").agg(
....: min_height=("height", "min"),
....: max_height=("height", "max"),
....: average_weight=("weight", np.mean),
....: )
....:
Out[91]:
min_height max_height average_weight
kind
cat 9.1 9.5 8.90
dog 6.0 34.0 102.75
Different columns specify different aggregation methods
By passing a dictionary to the agg method, you can specify different columns to use different aggregations:
In [95]: grouped.agg({"C": "sum", "D": "std"})
Out[95]:
C D
A
bar 0.392940 1.366330
foo -1.796421 0.884785
Conversion operation
Conversion is the operation of converting an object into an object of the same size. In the process of data analysis, data conversion operations are often required.
You can access lambda operations:
In [112]: ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min())
Fill in the na value:
In [121]: transformed = grouped.transform(lambda x: x.fillna(x.mean()))
Filter operation
The filter method can filter the data we don't need through lambda expressions:
In [136]: sf = pd.Series([1, 1, 2, 3, 3, 3])
In [137]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[137]:
3 3
4 3
5 3
dtype: int64
Apply operation
Some data may not be suitable for aggregation or conversion operations. Pandas provides a apply
method for more flexible conversion operations.
In [156]: df
Out[156]:
A B C D
0 foo one -0.575247 1.346061
1 bar one 0.254161 1.511763
2 foo two -1.143704 1.627081
3 bar three 0.215897 -0.990582
4 foo two 1.193555 -0.441652
5 bar two -0.077118 1.211526
6 foo one -0.408530 0.268520
7 foo three -0.862495 0.024580
In [157]: grouped = df.groupby("A")
# could also just call .describe()
In [158]: grouped["C"].apply(lambda x: x.describe())
Out[158]:
A
bar count 3.000000
mean 0.130980
std 0.181231
min -0.077118
25% 0.069390
...
foo min -1.143704
25% -0.862495
50% -0.575247
75% -0.408530
max 1.193555
Name: C, Length: 16, dtype: float64
You can add functions:
In [159]: grouped = df.groupby('A')['C']
In [160]: def f(group):
.....: return pd.DataFrame({'original': group,
.....: 'demeaned': group - group.mean()})
.....:
In [161]: grouped.apply(f)
Out[161]:
original demeaned
0 -0.575247 -0.215962
1 0.254161 0.123181
2 -1.143704 -0.784420
3 0.215897 0.084917
4 1.193555 1.552839
5 -0.077118 -0.208098
6 -0.408530 -0.049245
7 -0.862495 -0.503211
This article has been included in http://www.flydean.com/11-python-pandas-groupby/
The most popular interpretation, the most profound dry goods, the most concise tutorial, and many tips you don't know are waiting for you to discover!
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。