Introduction

Pandas has an option system that can control the display of pandas. Generally speaking, we don't need to modify it, but we don't rule out modification requirements under special circumstances. This article will explain in detail the option settings in pandas.

Common options

pd.options.display can control display options, such as setting the maximum number of display lines:

In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999

In addition, pd has 4 related methods to modify option:

  • get_option() / set_option()-get/set the value of a single option
  • reset_option()-reset the value of an option to the default value
  • describe_option()-Print the value of an option
  • option_context()-Perform some option changes in code snippets

As follows:

In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows", 101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r", 102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102

get/set options

pd.get_option and pd.set_option can be used to get and modify specific options:

In [11]: pd.get_option("mode.sim_interactive")
Out[11]: False

In [12]: pd.set_option("mode.sim_interactive", True)

In [13]: pd.get_option("mode.sim_interactive")
Out[13]: True

Use reset_option to reset:

In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60

Use regular expressions to reset multiple options:

In [19]: pd.reset_option("^display")

option_context Modify the option in the code environment. After the code ends, the option will be restored:

In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
   ....:     print(pd.get_option("display.max_rows"))
   ....:     print(pd.get_option("display.max_columns"))
   ....: 
10
5

In [21]: print(pd.get_option("display.max_rows"))
60

In [22]: print(pd.get_option("display.max_columns"))
0

Frequently used options

Below we look at some examples of frequently used options:

Maximum number of rows

display.max_rows and display.max_columns can set the maximum number of displayed rows and columns:

In [23]: df = pd.DataFrame(np.random.randn(7, 2))

In [24]: pd.set_option("max_rows", 7)

In [25]: df
Out[25]: 
          0         1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771

In [26]: pd.set_option("max_rows", 5)

In [27]: df
Out[27]: 
           0         1
0   0.469112 -0.282863
1  -1.509059 -1.135632
..       ...       ...
5  -0.494929  1.071804
6   0.721555 -0.706771

[7 rows x 2 columns]

Exceeding data display

display.large_repr can choose the display behavior for the excess rows or columns, which can be truncated frame:

In [43]: df = pd.DataFrame(np.random.randn(10, 10))

In [44]: pd.set_option("max_rows", 5)

In [45]: pd.set_option("large_repr", "truncate")

In [46]: df
Out[46]: 
           0         1         2         3         4         5         6         7         8         9
0  -0.954208  1.462696 -1.743161 -0.826591 -0.345352  1.314232  0.690579  0.995761  2.396780  0.014871
1   3.357427 -0.317441 -1.236269  0.896171 -0.487602 -0.082240 -2.182937  0.380396  0.084844  0.432390
..       ...       ...       ...       ...       ...       ...       ...       ...       ...       ...
8  -0.303421 -0.858447  0.306996 -0.028665  0.384316  1.574159  1.588931  0.476720  0.473424 -0.242861
9  -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693921  1.613616  0.464000  0.227371

[10 rows x 10 columns]

It can also be statistical information:

In [47]: pd.set_option("large_repr", "info")

In [48]: df
Out[48]: 
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   0       10 non-null     float64
 1   1       10 non-null     float64
 2   2       10 non-null     float64
 3   3       10 non-null     float64
 4   4       10 non-null     float64
 5   5       10 non-null     float64
 6   6       10 non-null     float64
 7   7       10 non-null     float64
 8   8       10 non-null     float64
 9   9       10 non-null     float64
dtypes: float64(10)
memory usage: 928.0 bytes

The width of the largest column

display.max_colwidth is used to set the width of the largest column.

In [51]: df = pd.DataFrame(
   ....:     np.array(
   ....:         [
   ....:             ["foo", "bar", "bim", "uncomfortably long string"],
   ....:             ["horse", "cow", "banana", "apple"],
   ....:         ]
   ....:     )
   ....: )
   ....: 

In [52]: pd.set_option("max_colwidth", 40)

In [53]: df
Out[53]: 
       0    1       2                          3
0    foo  bar     bim  uncomfortably long string
1  horse  cow  banana                      apple

In [54]: pd.set_option("max_colwidth", 6)

In [55]: df
Out[55]: 
       0    1      2      3
0    foo  bar    bim  un...
1  horse  cow  ba...  apple

Display accuracy

display.precision can set the display accuracy:

In [70]: df = pd.DataFrame(np.random.randn(5, 5))

In [71]: pd.set_option("precision", 7)

In [72]: df
Out[72]: 
           0          1          2          3          4
0 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.3371217
1 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.0856630
2 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.1125723
3 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.1596530
4  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197

The threshold of zero conversion

display.chop_threshold can set the threshold for displaying the data in Series or DF as 0:

In [75]: df = pd.DataFrame(np.random.randn(6, 6))

In [76]: pd.set_option("chop_threshold", 0)

In [77]: df
Out[77]: 
        0       1       2       3       4       5
0  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.6091
1 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.0875
2  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.4026
4  0.3996 -1.7660  0.8504  0.3881  0.9923  0.7441
5 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067

In [78]: pd.set_option("chop_threshold", 0.5)

In [79]: df
Out[79]: 
        0       1       2       3       4       5
0  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.6091
1  0.0000  0.6256  0.0000  0.0000  1.1039 -1.0875
2  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.8863
3 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.0000
4  0.0000 -1.7660  0.8504  0.0000  0.9923  0.7441
5 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067

In the above example, the absolute value <0.5 will be displayed as 0.

Alignment direction of column header

display.colheader_justify can modify the alignment direction of the column header text:

In [81]: df = pd.DataFrame(
   ....:     np.array([np.random.randn(6), np.random.randint(1, 9, 6) * 0.1, np.zeros(6)]).T,
   ....:     columns=["A", "B", "C"],
   ....:     dtype="float",
   ....: )
   ....: 

In [82]: pd.set_option("colheader_justify", "right")

In [83]: df
Out[83]: 
        A    B    C
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

In [84]: pd.set_option("colheader_justify", "left")

In [85]: df
Out[85]: 
   A       B    C  
0  0.1040  0.1  0.0
1  0.1741  0.5  0.0
2 -0.4395  0.4  0.0
3 -0.7413  0.8  0.0
4 -0.0797  0.4  0.0
5 -0.9229  0.3  0.0

Common options table:

OptionsDefaultsdescribe
display.chop_thresholdNoneIf set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends.
display.colheader_justifyrightControls the justification of column headers. used by DataFrameFormatter.
display.column_space12No description available.
display.date_dayfirstFalseWhen True, prints and parses dates with the day first, eg 20/01/2005
display.date_yearfirstFalseWhen True, prints and parses dates with the year first, eg 2005/01/20
display.encodingUTF-8Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console.
display.expand_frame_reprTrueWhether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width.
display.float_formatNoneThe callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example.
display.large_reprtruncateFor DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default), or switch to the view from df.info() (the behaviour in earlier versions of pandas). allowable settings, [‘truncate’, ‘info’]
display.latex.reprFalseWhether to produce a latex DataFrame representation for Jupyter frontends that support it.
display.latex.escapeTrueEscapes special characters in DataFrames, when using the to_latex method.
display.latex.longtableFalseSpecifies if the to_latex method of a DataFrame uses the longtable format.
display.latex.multicolumnTrueCombines columns when using a MultiIndex
display.latex.multicolumn_format‘l’Alignment of multicolumn labels
display.latex.multirowFalseCombines rows when using a MultiIndex. Centered instead of top-aligned, separated by clines.
display.max_columns0 or 20max_rows and max_columns are used in __repr__() methods to decide if to_string() or info() is used to render an object to a string. In case Python/IPython is running in a terminal this is set to 0 by default and pandas will correctly auto-detect the width of the terminal and switch to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection, in which case the default is set to 20. ‘None’ value means unlimited.
display.max_colwidth50The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. ‘None’ value means unlimited.
display.max_info_columns100max_info_columns is used in DataFrame.info method to decide if per column information will be printed.
display.max_info_rows1690785df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified.
display.max_rows60This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a truncated or summary repr. ‘None’ value means unlimited.
display.min_rows10The numbers of rows to show in a truncated repr (when max_rows is exceeded). Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows.
display.max_seq_items100when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “…” to the resulting string. If set to None, the number of items to be printed is unlimited.
display.memory_usageTrueThis specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.
display.multi_sparseTrue“Sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups)
display.notebook_repr_htmlTrueWhen True, IPython notebook will use html representation for pandas objects (if it is available).
display.pprint_nest_depth3Controls the number of nested levels to process when pretty-printing
display.precision6Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to numpy’s precision print option
display.show_dimensionstruncateWhether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)
display.width80Width of the display in characters. In case Python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.
display.html.table_schemaFalseWhether to publish a Table Schema representation for frontends that support it.
display.html.border1A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr.
display.html.use_mathjaxTrueWhen True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol.
io.excel.xls.writerxlwtThe default Excel writer engine for ‘xls’ files.Deprecated since version 1.2.0: As xlwt package is no longer maintained, the xlwt engine will be removed in a future version of pandas. Since this is the only engine in pandas that supports writing to .xls files, this option will also be removed.
io.excel.xlsm.writeropenpyxlThe default Excel writer engine for ‘xlsm’ files. Available options: ‘openpyxl’ (the default).
io.excel.xlsx.writeropenpyxlThe default Excel writer engine for ‘xlsx’ files.
io.hdf.default_formatNonedefault format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’
io.hdf.dropna_tableTruedrop ALL nan rows when appending to a table
io.parquet.engineNoneThe engine to use as a default for parquet reading and writing. If None then try ‘pyarrow’ and ‘fastparquet’
mode.chained_assignmentwarnControls SettingWithCopyWarning: ‘raise’, ‘warn’, or None. Raise an exception, warn, or no action if trying to use chained assignment.
mode.sim_interactiveFalseWhether to simulate interactive mode for purposes of testing.
mode.use_inf_as_naFalseTrue means treat None, NaN, -INF, INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way).
compute.use_bottleneckTrueUse the bottleneck library to accelerate computation if it is installed.
compute.use_numexprTrueUse the numexpr library to accelerate computation if it is installed.
plotting.backendmatplotlibChange the plotting backend to a different backend than the current matplotlib one. Backends can be implemented as third-party libraries implementing the pandas plotting API. They can use other plotting libraries like Bokeh, Altair, etc.
plotting.matplotlib.register_convertersTrueRegister custom converters with matplotlib. Set to False to de-register.

This article has been included in http://www.flydean.com/14-python-pandas-options/

The most popular interpretation, the most profound dry goods, the most concise tutorial, and many tips you don't know are waiting for you to discover!


flydean
890 声望433 粉丝

欢迎访问我的个人网站:www.flydean.com