对于模型可解释性的资料较少,这里统一做个整理。
如果想系统性学习,推荐阅读Interpretable machine learning 这本书。
What
可解释性是人可以理解系统决策的一个度量(Interpretability is the degree to which a human can understand the cause of a decision.)
Why
随着大量科学家在机器学习领域的持续投入,如今各种模型五花八门,且毋庸置疑这些模型在生产环境都产生的一定的效果。
但计算机系统做出的这些预测或决策的原因并无法被人类感知,因而人类无法直观的感知这些预测的效果或原因。
模型都是对现实世界的模拟,但是都不是 100% 的还原,因此没有一个单一 metric(如 auc) 能描述模型在生成环境中的真实表现。
此外机器学习系统并不知道自己在预测什么内容。
这个问题在某些领域可能非常重要(例如临床医学,反欺诈)。
How(理论)
- 使用有自解释性的模型(WB)
- 基于模型不可知论的黑盒探测(BB)
- 深度学习/神经网络模型的可解释性
自解释性的模型
- 线性回归模型
- 逻辑回归
- 决策树
白盒解释,需要知道模型具体实现,以及训练数据,甚至可能需要改模型代码。
黑盒探测
- Partial Dependence Plot (PDP)
- Global Surrogate
- Local Surrogate Model-Agnostic Method(LIME)
- Anchors(If-Then-That)
- Shapley Values
- SHAP
PDP
A partial dependence plot can show whether the relationship between the target and a feature is linear, monotonic or more complex.
Advantages: intuitive
Disadvantages:The assumption of independence is the biggest issue with PD plots.
Global Surrogate
A global surrogate model is an interpretable model that is trained to approximate the predictions of a black box model.
Advantages: flexible.Any interpretable models can be used.
Disadvantages:You have to be aware that you draw conclusions about the model and not about the data, since the surrogate model never sees the real outcome.
Local Surrogate Model-Agnostic Method(LIME)
Local surrogate models are interpretable models that are used to explain individual predictions of black box machine learning models.
Advantages: They make human-friendly explanations.LIME is one of the few methods that works for tabular data, text and images.
Disadvantages: The correct definition of the neighborhood differs./instability.
Anchor
A rule anchors a prediction if changes in other feature values do not affect the prediction.
Anchors utilizes reinforcement learning techniques in combination with a graph search algorithm to reduce the number of model calls (and hence the required runtime) to a minimum while still being able to recover from local optima.
Advantages: Like Lime.
Anchors are subsettable(shown as example).
Works for non-linear or complex in an instance’s neighborhood(reinforcement learning).
Can be parallelized.
Disadvantages: highly configurable.
many scenarios require discretization.
many calls to the ML model.
Shapley Values
SHAP
explore timeline
PDP(2001) --> LIME(2016) --> Anchors(2018)
Shapley Values(2014) --> SHAP(2016)
深度学习/神经网络模型
深度学习/神经网络模型的解释可以使用黑盒探测来实现,除此之外还有一些专门针对神经网络的可解释性科研探索。
- Feature Visualization
- Network dissection
- Pixel Attribution (Saliency Maps)
When to use
- Your model makes significant impact.
- When the problem is not well studied, or explore in a very new area.
In Action(实战)
python: sklearn、keras、alibi
R: iml
seldon 是一个模型生命周期管理的系统,有点类似于我们的 PAS 加一部分 DAG 的功能,他们基于上述 LIME 和 Anchor 等实现了一套模型解释和异常检测的框架并开源了,我们可以借鉴、探索下。
模型 outlier, adversarial and drift
https://github.com/SeldonIO/a...
模型 inspection and interpretation
https://github.com/SeldonIO/a...
具体参考 explain.ipynb
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。