摘要:本文是对ACL2021 NER 模块化交互网络用于命名实体识别这一论文工作进行初步解读。
本文分享自华为云社区《ACL2021 NER | 模块化交互网络用于命名实体识别》,作者: JuTzungKuei 。
论文: Li Fei, Wang Zheng, Hui Siu Cheung, Liao Lejian, Song Dandan, Xu Jing, He Guoxiu, Jia Meihuizi. Modularized Interaction Network for Named Entity Recognition [A]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) [C]. Online: Association for Computational Linguistics, 2021, 200–209.
链接:https://aclanthology.org/2021...
代码:无
0、摘要
现有NER模型缺点
- 基于序列标注的NER模型:长实体识别不佳,只关注词级信息
- 基于分段的NER模型:处理分段,而非单个词,不能捕获分段中的词级依赖关系
- 边界检测和类型预测可以相互配合,两个子任务可共享信息,相互加强
提出模块化交互网络模型MIN(Modularized Interaction Network)
- 同时利用段级信息和词级依赖关系
- 结合一种交互机制,支持边界检测和类型预测之间的信息共享
三份基准数据集上达到SOTA
1、介绍
- NER:查找和分类命名实体,person (PER), location
(LOC) or organization (ORG),下游任务:关系抽取、实体链接、问题生成、共引解析 两类方法
- 序列标注 sequence labeling:可捕获词级依赖关系
- 分段 segment(a span of words):可处理长实体
NER:检测实体边界和命名实体的类型,
- 分成两个子任务:边界检测、类型预测
- 两个任务之间是相关的,可以共享信息
举栗:xx来自纽约大学
- 如果知道大学是实体边界,更可能会预测类型是ORG
- 如果知道实体有个ORG类型,更可能会预测到“大学”边界
上述两个常用方法没有在子任务之间共享信息
- 序列标注:只把边界和类型当做标签
- 分段:先检测片段,再划分类型
本文提出MIN模型:NER模块、边界模块、类型模块、交互机制
- 指针网络作为边界模块的解码器,捕捉每个词的段级信息
- 段级信息和词级信息结合输入到序列标注模型
- 将NER划分成两个任务:边界检测、类型预测,并使用不同的编码器
- 提出一个相互加强的交互机制,所有信息融合到NER模块
- 三个模块共享单词表示,采用多任务训练
主要贡献:
- 新模型:MIN,同时利用段级信息和词级依赖
- 边界检测和类型预测分成两个子任务,结合交互机制,使两个子任务信息共享
- 三份基准数据集达到SOTA
2、方法
NER模块:RNN-BiLSTM-CRF,引用Neural architectures for named entity recognition
- 词表示:word(BERT) + char(BiLSTM)
- BiLSTM编码:双向LSTM,交互机制代替直接级联,门控函数动态控制
最终NER输出:H^{NER}=W^T[H;H^B;H^T;H^S] + bHNER=WT[H;HB;HT;HS]+b
H^{Bdy}HBdy表示边界模块输出,H^{Type}HType表示类型模块输出,H^{Seg}HSeg表示分段信息
- CRF解码:转移概率 + 发射概率
边界模块:双向LSTM编码H^{Bdy}HBdy,单向LSTM解码
- 解码:
s_j=h_{j-1}^{Bdy}+h_{j}^{Bdy}+h_{j+1}^{Bdy}sj=hj−1Bdy+hjBdy+hj+1Bdy
d_j=LSTM(s_j, d_{j-1})dj=LSTM(sj,dj−1) - Biaffine Attention机制:
- 解码:
- 类型模块:BiLSTM + CRF
交互机制:
- self attention 得到标签增强的边界H^{B-E}HB−E,类型H^{T-E}HT−E
- Biaffine Attention 计算得分 \alpha^{B-E}αB−E
- 交互后的边界:r_i^{B-E}=\sum_{j=1}^{n}\alpha_{i,j}^{B-E}h_j^{T-E}riB−E=∑j=1nαi,jB−EhjT−E
- 更新后的边界:\overline{h}_i^{Bdy}=[h_i^{B-E},r_i^{B-E}]hiBdy=[hiB−E,riB−E]
- 更新后的类型:\overline{h}_i^{Type}=[h_i^{T-E},r_i^{T-E}]hiType=[hiT−E,riT−E]
联合训练:多任务
- 每个任务的损失函数
- 每个任务的损失函数
- 最终损失函数:\mathcal{L}=\mathcal{L}^{NER}+\mathcal{L}^{Type}+\mathcal{L}^{Bdy}L=LNER+LType+LBdy
3、结果
Baseline (sequence labeling-based)
- CNN-BiLSTM-CRF
- RNN-BiLSTM-CRF
- ELMo-BiLSTM-CRF
- Flair (char-BiLSTM-CRF)
- BERT-BiLSTM-CRF
- HCRA (CNN-BiLSTM-CRF)
Baseline (segment-based)
- BiLSTM-Pointer
- HSCRF
- MRC+BERT
- Biaffine+BERT
号外号外:想了解更多的AI技术干货,欢迎上华为云的AI专区,目前有AI编程Python等六大实战营供大家免费学习。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。