微信搜索:码农StayUp
主页地址:https://gozhuyinglong.github.io
源码分享:https://github.com/gozhuyinglong/blog-demos
上篇介绍了《单向散列加密》,它是一种消息摘要算法。该算法在信息安全领域,有很多重要的应用场景,比如:用户密码保护、数字签名、文件完整性校验、云盘妙传等。
单向散列加密只能够对消息进行加密(严格来说是计算消息的摘要),想要实现对密文解密,需要使用其它加密方式了。今天介绍一个在信息安全领域中,比较重要的加密方式——对称加密。
下面是本篇讲述内容:
加密、解密和密钥
加密(Encrypt)是从明文生成密文的步骤,解密(Decrypt)是从密文还原成明文的步骤,而这两个步骤都需要用到密钥(Key)。这和我们现实中,用钥匙上锁和开锁是一样的。
什么是对称加密
对称加密(Symmetric Cryptography)是密码学中的一类加密算法,这类算法在加密和解密时,使用相同的密钥。
对称加密又称为共享密钥加密,其最大的缺点是,对称加密的安全性依赖于密钥,一旦泄露,就意味着任何人都能解密消息。
对称加密的优点是加密速度快,所以在很多场合被使用。
常见算法
本节介绍对称加密的一些常见算法,包括DES、3DES和AES。
DES算法
DES(Data Encryption Standard,中文:数据加密标准),是一种对称加密算法。该算法在1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),并于1977年被发布,随后在国际上广泛流传开来。然而,随着计算机的进步,DES 已经能够被暴力破解,所以该算法已经不安全了。
DES是一种分组密码(Block Cipher,或者叫块加密),即将明文按64比特进行分组加密,每组生成64位比特的密文。它的密钥长度为56比特(从规格上来说,密钥长度是64比特,但由于每隔7比特会设置一个用于错误检查的比特,因此实际长度为56比特)。
3DES算法
三重数据加密算法(Triple Data Encryption Algorithm,缩写为TDEA),简称3DES(Triple-DES),是DES的增强版,相当于对每组数据应用了三次DES算法。
由于DES算法的密钥长度过短,容易被暴力破解,为了解决这一问题,设计出了该算法。它使用简单的方法,通过增加DES密钥长度的方式来避免类似攻击,而不是一种全新的密码算法。
该算法在每次应用DES时,使用不同的密钥,所以有三把独立密钥。这三把密钥组成一起,是一个长度为168(56 + 56 + 56)比特的密钥,所以3DES算法的密钥总长度为168比特。
3DES的加密过程,并不是进行三次DES加密(加密→加密→加密),而是以密钥1、密钥2、密钥3的顺序,进行加密→解密→加密的过程。
3DES的解密过程和加密正好相反,是以密钥3、密钥2、密钥1的顺序,进行解密→加密→解密的操作。
AES算法
AES(Advanced Encryption Standard),即高级加密标准,是取代DES算法的一种新的对称加密算法。AES算法是从全世界的企业和密码学家,提交的对称密码算法中竞选出来的,最终 Rijndael 加密算法胜出,所以AES又称为 Rijndael 加密算法。
AES也是一种分组密码,它的分组长度为128比特,密钥长度可以为128比特、192比特或256比特。
分组密码的模式
上面介绍的DES、3DES和AES都属于分组密码,它们只能加密固定长度的明文。如果需要加密更长的明文,就需要对分组密码进行迭代,而分组密码的迭代方法称为分组密码的模式(Model)。简而一句话:分组密码的模式,就是分组密码的迭代方式。
分组密码有很多种模式,这里主要介绍以下几种:ECB、CBC、CFB、OFB、CTR。
明文分组与密文分组
在下面对模式的介绍时,会用到两个术语,这里先介绍一下:
在分组密码中,我们称每组的明文为明文分组,每组生成的密文称为密文分组。
若将所有的明文分组合并起来就是完整的明文(先忽略填充),将所以的密文分组合并起来就是完整的密文。
ECB模式
ECB(Electronic CodeBook)模式,即电子密码本模式。该模式是将明文分组,加密后直接成为密文分组,分组之间没有关系。
ECB模式是所有模式中最简单的一种,该模式的明文分组与密文分组是一一对应的关系,若明文分组相同,其密文分组也一定相同。因此,ECB模式也是最不安全的模式。
CBC模式
CBC(Cipher Block Chaining)模式,即密码分组链接模式。该模式首先将明文分组与前一个密文分组进行XOR运算,然后再进行加密。只有第一个明文分组特殊,需要提前为其生成一个与分组长度相同的比特序列,进行XOR运算,这个比特序列称为初始化向量(Initialization Vector),简称IV。
CFB模式
CFB(Cipher FeedBack)模式,即密文反馈模式。该模式首先将前一个密文分组进行加密,再与当前明文分组进行XOR运算,来生成密文分组。同样CFB模式也需要一个IV。
OFB模式
OFB(Output FeedBack)模式,即输出反馈模式。该模式会产生一个密钥流,即将密码算法的前一个输出值,做为当前密码算法的输入值。该输入值再与明文分组进行XOR运行,计算得出密文分组。该模式需要一个IV,进行加密后做为第一个分组的输入。
CTR模式
CTR(CounTeR)模式,即计数器模式。该模式也会产生一个密钥流,它通过递增一个计数器来产生连续的密钥流。对该计数器进行加密,再与明文分组进行XOR运算,计算得出密文分组。
分组密码的填充
在分组密码中,当数据长度不符合分组长度时,需要按一定的方式,将尾部明文分组进行填充,这种将尾部分组数据填满的方法称为填充(Padding)。
No Padding
即不填充,要求明文的长度,必须是加密算法分组长度的整数倍。
... | DD DD DD DD DD DD DD DD | DD DD DD DD DD DD DD DD |
ANSI X9.23
在填充字节序列中,最后一个字节填充为需要填充的字节长度,其余字节填充0。
... | DD DD DD DD DD DD DD DD | DD DD DD DD 00 00 00 04 |
ISO 10126
在填充字节序列中,最后一个字节填充为需要填充的字节长度,其余字节填充随机数。
... | DD DD DD DD DD DD DD DD | DD DD DD DD 81 A6 23 04 |
PKCS#5和PKCS#7
在填充字节序列中,每个字节填充为需要填充的字节长度。
... | DD DD DD DD DD DD DD DD | DD DD DD DD 04 04 04 04 |
ISO/IEC 7816-4
在填充字节序列中,第一个字节填充固定值80,其余字节填充0。若只需填充一个字节,则直接填充80。
... | DD DD DD DD DD DD DD DD | DD DD DD DD 80 00 00 00 |
... | DD DD DD DD DD DD DD DD | DD DD DD DD DD DD DD 80 |
Zero Padding
在填充字节序列中,每个字节填充为0。
... | DD DD DD DD DD DD DD DD | DD DD DD DD 00 00 00 00 |
Java代码实现
Java在底层已经封装好了对称加密的实现, 我们只需要使用即可。现在介绍几个重要的类:
SecureRandom类
SecureRandom类是一个强安全的随机数生成器(Random Number Generator,简称:RNG),加密相关的推荐使用此随机数生成器。
我们可以通过构造方法生成一个实例,或者向构造方法传递一个种子来创建实例。
SecureRandom random = new SecureRandom();
KeyGenerator类
KeyGenerator类是对称密码的密钥生成器,需要指定加密算法,来生成相应的密钥。
Java中支持的算法:
AES
(128)DES
(56)DESede
(168)HmacSHA1
HmacSHA256
下面是一些标准算法的介绍:
生成密钥代码如下:
/**
* 通过密码和算法获取 Key 对象
*
* @param key 密钥
* @param algorithm 算法,例如:AES (128)、DES (56)、DESede (168)、HmacSHA1、HmacSHA256
* @return 密钥 Key
* @throws Exception
*/
private static Key getKey(byte[] key, String algorithm) throws Exception {
// 通过算法获取 KeyGenerator 对象
KeyGenerator keyGenerator = KeyGenerator.getInstance(algorithm);
// 使用密钥做为随机数,初始化 KeyGenerator 对象
keyGenerator.init(new SecureRandom(key));
// 生成 Key
return keyGenerator.generateKey();
}
Cipher类
Cipher类提供了加密和解密的功能。该类需要指定一个转换(Transformation)来创建一个实例,转换的命名方式:算法名称/工作模式/填充方式。
下面是Java支持的转换:
AES/CBC/NoPadding
(128)AES/CBC/PKCS5Padding
(128)AES/ECB/NoPadding
(128)AES/ECB/PKCS5Padding
(128)DES/CBC/NoPadding
(56)DES/CBC/PKCS5Padding
(56)DES/ECB/NoPadding
(56)DES/ECB/PKCS5Padding
(56)DESede/CBC/NoPadding
(168)DESede/CBC/PKCS5Padding
(168)DESede/ECB/NoPadding
(168)DESede/ECB/PKCS5Padding
(168)RSA/ECB/PKCS1Padding
(1024, 2048)RSA/ECB/OAEPWithSHA-1AndMGF1Padding
(1024, 2048)RSA/ECB/OAEPWithSHA-256AndMGF1Padding
(1024, 2048)
下面是一些标准的模式:
下面是一些标准的填充:
加密代码如下:
private static final String DES_ALGORITHM = "DES";
private static final String DES_TRANSFORMATION = "DES/ECB/PKCS5Padding";
/**
* DES 加密
*
* @param data 原始数据
* @param key 密钥
* @return 密文
*/
private static byte[] encryptDES(byte[] data, byte[] key) throws Exception {
// 获取 DES Key
Key secretKey = getKey(key, DES_ALGORITHM);
// 通过标准转换获取 Cipher 对象, 由该对象完成实际的加密操作
Cipher cipher = Cipher.getInstance(DES_TRANSFORMATION);
// 通过加密模式、密钥,初始化 Cipher 对象
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
// 生成密文
return cipher.doFinal(data);
}
解密代码如下:
private static final String DES_ALGORITHM = "DES";
private static final String DES_TRANSFORMATION = "DES/ECB/PKCS5Padding";
/**
* DES 解密
*
* @param data 密文
* @param key 密钥
* @return 原始数据
*/
private static byte[] decryptDES(byte[] data, byte[] key) throws Exception {
// 获取 DES Key
Key secretKey = getKey(key, DES_ALGORITHM);
// 通过标准转换获取 Cipher 对象, 由该对象完成实际的加密操作
Cipher cipher = Cipher.getInstance(DES_TRANSFORMATION);
// 通过解密模式、密钥,初始化 Cipher 对象
cipher.init(Cipher.DECRYPT_MODE, secretKey);
// 生成原始数据
return cipher.doFinal(data);
}
完整代码
完整代码请访问我的Github,若对你有帮助,欢迎给个⭐,感谢~~🌹🌹🌹
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。