头图

Hadoop实战篇(2)

Hadoop实战篇2

作者 | WenasWei

前言

在上一篇的Hadoop实战篇介绍过了Hadoop-离线批处理技术的本地模式和伪集群模式安装,接下来继续学习 Hadoop 集群模式安装; 将从以下几点介绍:

  • Linux 主机部署规划
  • Zookeeper 注册中心安装
  • 集群模式安装
  • Hadoop 的目录结构说明和命令帮助文档
  • 集群动态增加和删除节点

一 Linux环境的配置与安装Hadoop

Hadoop集群部署规划:

Hadoop集群部署规划

Hadoop需要使用到 Linux 环境上的一些基本的配置需要,Hadoop 用户组和用户添加,免密登录操作,JDK安装

1.1 VMWare中Ubuntu网络配置

在使用 VMWare 安装 Ubuntu18.04-Linux 操作系统下时产生系统配置问题可以通过分享的博文进行配置,CSDN跳转链接: VMWare中Ubuntu网络配置

其中包含了以下几个重要操作步骤:

  • Ubuntu系统信息与修改主机名
  • Windows设置VMWare的NAT网络
  • Linux网关设置与配置静态IP
  • Linux修改hosts文件
  • Linux免密码登录

1.2 Hadoop 用户组和用户添加

1.2.1 添加Hadoop用户组和用户

以 root 用户登录 Linux-Ubuntu 18.04虚拟机,执行命令:

$ groupadd hadoop
$ useradd -r -g hadoop hadoop
1.2.2 赋予Hadoop用户目录权限

/usr/local 目录权限赋予 Hadoop 用户, 命令如下:

$ chown -R hadoop.hadoop /usr/local/
$ chown -R hadoop.hadoop /tmp/
$ chown -R hadoop.hadoop /home/
1.2.3 赋予Hadoop用户sodu权限

编辑/etc/sudoers文件,在root ALL=(ALL:ALL) ALL下添加hadoop ALL=(ALL:ALL) ALL

$ vi /etc/sudoers

Defaults        env_reset
Defaults        mail_badpass
Defaults        secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin"
root    ALL=(ALL:ALL) ALL
hadoop  ALL=(ALL:ALL) ALL
%admin ALL=(ALL) ALL
%sudo   ALL=(ALL:ALL) ALL
1.2.4 赋予Hadoop用户登录密码
$ passwd hadoop

Enter new UNIX password: 输入新密码
Retype new UNIX password: 确认新密码
passwd: password updated successfully

1.3 JDK安装

Linux安装JDK可以参照分享的博文《Logstash-数据流引擎》-<第三节:Logstash安装>--(第二小节: 3.2 Linux安装JDK进行)安装配置到每一台主机上,CSDN跳转链接: Logstash-数据流引擎

1.4 Hadoop官网下载

官网下载:https://hadoop.apache.org/rel... Binary download

  • 使用 wget 命名下载(下载目录是当前目录):

例如:version3.3.0 https://mirrors.bfsu.edu.cn/a...

$ wget https://mirrors.bfsu.edu.cn/apache/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz
  • 解压、移动到你想要放置的文件夹: /usr/local
$ mv ./hadoop-3.3.0.tar.gz /usr/local

$ cd /usr/local

$ tar -zvxf hadoop-3.3.0.tar.gz

1.5 配置Hadoop环境

  • 修改配置文件/etc/profile:
$ vi /etc/profile

# 类同JDK配置添加
export JAVA_HOME=/usr/local/java/jdk1.8.0_152
export JRE_HOME=/usr/local/java/jdk1.8.0_152/jre
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export HADOOP_HOME=/usr/local/hadoop-3.3.0
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH:$HOME/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
  • 使配置文件生效
$ source /etc/profile 
  • 查看Hadoop配置是否成功
$ hadoop version

Hadoop 3.3.0
Source code repository https://gitbox.apache.org/repos/asf/hadoop.git -r aa96f1871bfd858f9bac59cf2a81ec470da649af
Compiled by brahma on 2020-07-06T18:44Z
Compiled with protoc 3.7.1
From source with checksum 5dc29b802d6ccd77b262ef9d04d19c4
This command was run using /usr/local/hadoop-3.3.0/share/hadoop/common/hadoop-common-3.3.0.jar

从结果可以看出,Hadoop版本为 Hadoop 3.3.0,说明 Hadoop 环境安装并配置成功。

二 Zookeeper注册中心

Zookeeper注册中心章节主要介绍如下:

  • Zookeeper介绍
  • Zookeeper下载安装
  • Zookeeper配置文件
  • 启动zookeeper集群验证

Zookeeper 集群主机规划:

  • hadoop1
  • hadoop2
  • hadoop3

2.1 Zookeeper介绍

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户,其中包含一个简单的原语集,提供Java和C的接口,ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口。其中分布锁和队列有Java和C两个版本,选举只有Java版本。

Zookeeper负责服务的协调调度, 当客户端发起请求时, 返回正确的服务器地址。

2.2 Zookeeper下载安装

Linux(执行主机-hadoop1) 下载 apache-zookeeper-3.5.9-bin 版本包, 移动到安装目录: /usr/local/,解压并重命名为: zookeeper-3.5.9:

$ wget https://mirrors.tuna.tsinghua.edu.cn/apache/zookeeper/zookeeper-3.5.9/apache-zookeeper-3.5.9-bin.tar.gz

$ mv apache-zookeeper-3.5.9-bin.tar.gz /usr/local/
$ cd /usr/local/
$ tar -zxvf apache-zookeeper-3.5.9-bin.tar.gz
$ mv apache-zookeeper-3.5.9-bin zookeeper-3.5.9

离线安装可以到指定官网下载版本包上传安装,官网地址: http://zookeeper.apache.org/r...

如图所示:

zookeeper下载官网

2.3 Zookeeper配置文件

2.3.1 配置Zookeeper环境变量

配置Zookeeper环境变量,需要在 /etc/profile 配置文件中修改添加,具体配置如下:

export JAVA_HOME=/usr/local/java/jdk1.8.0_152
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export ZOOKEEPER_HOME=/usr/local/zookeeper-3.5.9
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$PATH:$HOME/bin:$ZOOKEEPER_HOME

修改完成后刷新环境变量配置文件:

$ source /etc/profile

其中已经包含安装了JDK配置,如无安装JDK可以查看Hadoop实战篇(1)中的安装

2.3.2 Zookeeper配置文件
  • 在zookeeper根目录/usr/local/zookeeper-3.5.9下创建文件夹:datadataLog
$ cd /usr/local/zookeeper-3.5.9
$ mkdir data
$ mkdir dataLog

切换到新建的 data 目录下,创建 myid 文件,添加具体内容为数字1,如下所示:

$ cd /usr/local/zookeeper-3.5.9/data
$ vi myid
# 添加内容数字1
1

$ cat myid
1
  • 进入conf目录中修改配置文件

复制配置文件 zoo_sample.cfg 并且修改名称为 zoo.cfg:

$ cp zoo_sample.cfg zoo.cfg

修改 zoo.cfg 文件,修改内容如下:

tickTime=2000
initLimit=10
syncLimit=5
dataDir=/usr/local/zookeeper-3.5.9/data
dataLogDir=/usr/local/zookeeper-3.5.9/dataLog
clientPort=2181
server.1=hadoop1:2888:3888
server.2=hadoop2:2888:3888
server.3=hadoop3:2888:3888
2.3.3 将Zookeeper和系统环境变量拷贝到其他服务器
  • 根据对服务器的规划,将 Zookeeper 和配置文件 /etc/profile 拷贝到 hadoop2 和 hadoop3 主机上:
$ scp -r zookeeper-3.5.9/ root@hadoop2:/usr/local/
$ scp -r zookeeper-3.5.9/ root@hadoop3:/usr/local/
$ scp /etc/profile root@hadoop2:/etc/
$ scp /etc/profile root@hadoop3:/etc/
  • 登陆到 hadoop2 和 hadoop3
    分别修改 hadoop2 主机和 hadoop3 主机上的配置文件内容: /usr/local/zookeeper-3.5.9/data/myid为 2 和 3

并刷新环境变量配置文件:

$ source /etc/profile

2.4 启动zookeeper集群

在 hadoop1、hadoop2 和 hadoop3 三台服务器上分别启动 Zookeeper 服务器并查看 Zookeeper 运行状态

  • hadoop1主机:
$ cd /usr/local/zookeeper-3.5.9/bin/
$ ./zkServer.sh start
$ ./zkServer.sh status

ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper-3.5.9/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower

说明hadoop1主机上 zookeeper 的运行状态是 follower

  • hadoop2主机:
$ cd /usr/local/zookeeper-3.5.9/bin/
$ ./zkServer.sh start
$ ./zkServer.sh status

ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper-3.5.9/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: leader

说明hadoop2主机上 zookeeper 的运行状态是 leader

  • hadoop3主机:
$ cd /usr/local/zookeeper-3.5.9/bin/
$ ./zkServer.sh start
$ ./zkServer.sh status

ZooKeeper JMX enabled by default
Using config: /usr/local/zookeeper-3.5.9/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost. Client SSL: false.
Mode: follower

说明hadoop3主机上 zookeeper 的运行状态是 follower

三 集群模式安装

3.1 Hadoop配置文件修改

3.1.1 修改配置 hadoop-env.sh

主机hadoop1 配置 hadoop-env.sh ,在 hadoop-env.sh 文件中指定 JAVA_HOME 的安装目录: /usr/local/hadoop-3.3.0/etc/hadoop,配置如下:

export JAVA_HOME=/usr/local/java/jdk1.8.0_152
# 配置允许使用 root 账户权限
export HDFS_DATANODE_USER=root 
export HADOOP_SECURE_USER=root 
export HDFS_NAMENODE_USER=root 
export HDFS_SECONDARYNAMENODE_USER=root 
export YARN_RESOURCEMANAGER_USER=root 
export YARN_NODEMANAGER_USER=root
export HADOOP_SHELL_EXECNAME=root
export HDFS_JOURNALNODE_USER=root
export HDFS_ZKFC_USER=root
3.1.2 修改配置 core-site.xml

主机hadoop1 配置 core-site.xml ,在 core-site.xml 文件中指定 Zookeeper 的集群节点 /usr/local/hadoop-3.3.0/etc/hadoop,配置如下:

<configuration>
    <property>
      <name>fs.defaultFS</name>
      <value>hdfs://ns/</value>
    </property>
    <property>
      <name>hadoop.tmp.dir</name>
      <value>/usr/local/hadoop-3.3.0/tmp</value>
      <description>Abase for other temporary directories.</description>
        </property>
    <property>
      <name>ha.zookeeper.quorum</name>
      <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value>
    </property>
</configuration>
3.1.3 修改配置 hdfs-site.xml

主机hadoop1 配置 hdfs-site.xml ,在 hdfs-site.xml 文件中指定 namenodes 节点, /usr/local/hadoop-3.3.0/etc/hadoop,配置如下:

<configuration>
        <property>
          <name>dfs.nameservices</name>
          <value>ns</value>
        </property>
        <property>
          <name>dfs.ha.namenodes.ns</name>
          <value>nn1,nn2</value>
        </property>
        <!-- nn1的RPC通信地址,nn1所在地址  -->
        <property>
          <name>dfs.namenode.rpc-address.ns.nn1</name>
          <value>hadoop1:9000</value>
        </property>
        <!-- nn1的http通信地址,外部访问地址 -->
        <property>
          <name>dfs.namenode.http-address.ns.nn1</name>
          <value>hadoop1:9870</value>
        </property>
        <!-- nn2的RPC通信地址,nn2所在地址 -->
        <property>
          <name>dfs.namenode.rpc-address.ns.nn2</name>
          <value>hadoop2:9000</value>
        </property>
        <!-- nn2的http通信地址,外部访问地址 -->
        <property>
          <name>dfs.namenode.http-address.ns.nn2</name>
          <value>hadoop2:9870</value>
        </property>
        <!-- 指定NameNode的元数据在JournalNode日志上的存放位置(一般和zookeeper部署在一起) -->
        <property>
          <name>dfs.namenode.shared.edits.dir</name>
          <value>qjournal://hadoop5:8485;hadoop6:8485;hadoop7:8485/ns</value>
        </property>
        <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
        <property>
          <name>dfs.journalnode.edits.dir</name>
          <value>/usr/local/hadoop-3.3.0/data/journal</value>
        </property>
        <!--客户端通过代理访问namenode,访问文件系统,HDFS 客户端与Active 节点通信的Java 类,使用其确定Active 节点是否活跃  -->
        <property>
          <name>dfs.client.failover.proxy.provider.ns</name>
          <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
        </property>
        <!--这是配置自动切换的方法,有多种使用方法,具体可以看官网,这里是远程登录杀死的方法  -->
        <property>
          <name>dfs.ha.fencing.methods</name>
          <!-- 这个参数的值可以有多种,你也可以换成shell(/bin/true)试试,也是可以的,这个脚本do nothing 返回0 -->
          <value>sshfence</value>
        </property>
        <!-- 这个是使用sshfence隔离机制时才需要配置ssh免登陆 -->
        <property>
          <name>dfs.ha.fencing.ssh.private-key-files</name>
          <value>/root/.ssh/id_rsa</value>
        </property>
        <!-- 配置sshfence隔离机制超时时间,这个属性同上,如果你是用脚本的方法切换,这个应该是可以不配置的 -->
        <property>
          <name>dfs.ha.fencing.ssh.connect-timeout</name>
          <value>30000</value>
        </property>
        <!-- 这个是开启自动故障转移,如果你没有自动故障转移,这个可以先不配 -->
        <property>
          <name>dfs.ha.automatic-failover.enabled</name>
          <value>true</value>
        </property>
</configuration>
3.1.4 修改配置 mapred-site.xml

主机hadoop1 配置 mapred-site.xml ,在 mapred-site.xml 文件中指定 mapreduce 信息, /usr/local/hadoop-3.3.0/etc/hadoop,配置如下:

<configuration>
   <property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
   </property>
   <property>
       <name>yarn.app.mapreduce.am.env</name>
       <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
   </property>
   <property>
       <name>mapreduce.map.env</name>
       <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
   </property>
   <property>
       <name>mapreduce.reduce.env</name>
       <value>HADOOP_MAPRED_HOME=${HADOOP_HOME}</value>
   </property>
   <property>
     <name>mapreduce.framework.name</name>
     <value>yarn</value>
   </property>
   <property>
       <name>mapreduce.jobhistory.address</name>
       <value>hadoop1:10020</value>
   </property>
   <property>
       <name>mapreduce.jobhistory.webapp.address</name>
       <value>hadoop1:19888</value>
   </property>
3.1.5 修改配置 yarn-site.xml

主机hadoop1 配置 yarn-site.xml ,在 yarn-site.xml 文件中指定 ResourceManaeger 节点, /usr/local/hadoop-3.3.0/etc/hadoop,配置如下:

<configuration>
<property>
  <name>yarn.resourcemanager.ha.enabled</name>
  <value>true</value>
</property>

<property>
  <name>yarn.resourcemanager.cluster-id</name>
  <value>yrc</value>
</property>

<property>
  <name>yarn.resourcemanager.ha.rm-ids</name>
  <value>rm1,rm2</value>
</property>

<property>
  <name>yarn.resourcemanager.hostname.rm1</name>
  <value>hadoop3</value>
</property>

<property>
  <name>yarn.resourcemanager.hostname.rm2</name>
  <value>hadoop4</value>
</property>

<property>
   <name>yarn.resourcemanager.address.rm1</name>
   <value>hadoop3:8032</value>
</property>

<property>
  <name>yarn.resourcemanager.scheduler.address.rm1</name>
  <value>hadoop3:8030</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address.rm1</name>
  <value>hadoop3:8088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
  <value>hadoop3:8031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address.rm1</name>
  <value>hadoop3:8033</value>
</property>

<property>
  <name>yarn.resourcemanager.ha.admin.address.rm1</name>
  <value>hadoop3:23142</value>
</property>

<property>
   <name>yarn.resourcemanager.address.rm2</name>
   <value>hadoop4:8032</value>
</property>

<property>
  <name>yarn.resourcemanager.scheduler.address.rm2</name>
  <value>hadoop4:8030</value>
</property>

<property>
  <name>yarn.resourcemanager.webapp.address.rm2</name>
  <value>hadoop4:8088</value>
</property>

<property>
  <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
  <value>hadoop4:8031</value>
</property>

<property>
  <name>yarn.resourcemanager.admin.address.rm2</name>
  <value>hadoop4:8033</value>
</property>

<property>
  <name>yarn.resourcemanager.ha.admin.address.rm2</name>
  <value>hadoop4:23142</value>
</property>

<property>
  <name>yarn.resourcemanager.zk-address</name>
  <value>hadoop1:2181,hadoop2:2181,hadoop3:2181</value>
</property>

 <!-- 资源调度模型  -->
<property> 
  <name>yarn.nodemanager.aux-services</name> 
  <value>mapreduce_shuffle</value> 
</property> 

 <!-- 开启mapreduce中间过程压缩  -->
<property>
  <name>mapreduce.map.output.compress</name>  
  <value>true</value>
</property>
</configuration>
3.1.6 修改 workers 文件

主机hadoop1 配置 workers ,在 workers 文件中指定 DataNode 节点, /usr/local/hadoop-3.3.0/etc/hadoop,配置如下:

hadoop5
hadoop6
hadoop7

3.2 Hadoop节点拷贝配置

3.2.1 将配置好的Hadoop复制到其他节点

将在 hadoop1 上安装并配置好的 Hadoop 复制到其他服务器上,操作如下所示:

scp -r /usr/local/hadoop-3.3.0/ hadoop2:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ hadoop3:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ hadoop4:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ hadoop5:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ hadoop6:/usr/local/
scp -r /usr/local/hadoop-3.3.0/ hadoop7:/usr/local/
3.2.2 复制 hadoop1 上的系统环境变量

将在 hadoop1 上安装并配置好的系统环境变量复制到其他服务器上,操作如下所示:

sudo scp /etc/profile hadoop2:/etc/
sudo scp /etc/profile hadoop3:/etc/
sudo scp /etc/profile hadoop4:/etc/
sudo scp /etc/profile hadoop5:/etc/
sudo scp /etc/profile hadoop6:/etc/
sudo scp /etc/profile hadoop7:/etc/

使系统环境变量生效

source /etc/profile
hadoop version

3.3 启动 hadoop 集群(1)

启动 hadoop 集群步骤分为:

  • 启动并验证 journalnode 进程
  • 格式化HDFS
  • 格式化ZKFC
  • 启动并验证 NameNode 进程
  • 同步元数据信息
  • 启动并验证备用NameNode 进程
  • 启动并验证DataNode进程
  • 启动并验证YARN
  • 启动并验证ZKFC
  • 查看每台服务器上运行的运行信息
3.3.1 启动并验证 journalnode 进程

(1)启动 journalnode 进程,在hadoop1服务器上执行如下命令,启动 journalnode 进程:

hdfs --workers --daemon start journalnode

(2)验证 journalnode 进程是否启动成功,分别在hadoop5、hadoop6和hadoop7三台服务器上分别执行 jps 命令,执行结果如下

  • hadoop5服务器:
root@hadoop5:~# jps
17322 Jps
14939 JournalNode
  • hadoop6服务器:
root@hadoop6:~# jps
13577 JournalNode
15407 Jps
  • hadoop7服务器:
root@hadoop7:~# jps
13412 JournalNode
15212 Jps
3.3.2 格式化HDFS
  • 在hadoop1服务器上执行如下命令,格式化HDFS:
hdfs namenode -format
  • 执行后,命令行会输出成功信息:
common.Storage: Storage directory /usr/local/hadoop-3.3.0/tmp/dfs/name has been successfully formatted.
3.3.3 格式化ZKFC
  • 在hadoop1服务器上执行如下命令,格式化 ZKFC :
hdfs zkfc -formatZK
  • 执行后,命令行会输出成功信息:
ha.ActiveStandbyElector: Successfuly created /hadoop-ha/ns in ZK.
3.3.4 启动并验证 NameNode 进程
  • 启动NameNode进程,在hadoop1服务器上执行
hdfs --daemon start namenode
  • 验证NameNode进程启动成功,
# jps
26721 NameNode
50317 Jps
3.3.5 同步元数据信息
  • 在hadoop2服务器上执行如下命令,进行元数据信息的同步操作:
hdfs namenode -bootstrapStandby
  • 执行后,命令行成功信息:
common.Storage: Storage directory /usr/local/hadoop-3.3.0/tmp/dfs/name has been successfully formatted.
3.3.6 启动并验证备用NameNode进程
  • 在hadoop2服务器上执行如下命令,启动备用NameNode 进程:
hdfs --daemon start namenode
  • 验证备用的NameNode 进程
# jps
21482 NameNode
50317 Jps
3.3.7 启动并验证DataNode进程
  • 在hadoop1服务器上执行如下命令,启动DataNode进程
hdfs --workers --daemon start datanode
  • 验证DataNode进程在hadoop5、hadoop6和hadoop7服务器上执行:

hadoop5服务器:

# jps
31713 Jps
16435 DataNode
14939 JournalNode
15406 NodeManager

hadoop6服务器:

# jps
13744 NodeManager
13577 JournalNode
29806 Jps
14526 DataNode

hadoop7服务器:

# jps
29188 Jps
14324 DataNode
13412 JournalNode
13580 NodeManager
3.3.8 启动并验证YARN
  • 在hadoop1服务器上执行如下命令,启动YARN
start-yarn.sh
  • 在hadoop3、hadoop4服务器上执行jps命令,验证YARN启动成功

hadoop3服务器:

# jps
21937 Jps
8070 ResourceManager
7430 QuorumPeerMain

hadoop4服务器:

# jps
6000 ResourceManager
20183 Jps
3.3.9 启动并验证ZKFC
  • 在hadoop1服务器上执行如下命令,启动ZKFC:
hdfs --workers daemon start zkfc
  • 在hadoop1和hadoop2上执行jps命令,验证DFSZKFailoveController进程启动成功

hadoop1服务器:

# jps
26721 NameNode
14851 QuorumPeerMain
50563 Jps
27336 DFSZKFailoverController

hadoop2服务器:

# jps
21825 DFSZKFailoverController
39399 Jps
15832 QuorumPeerMain
21482 NameNode
3.3.10 查看每台服务器上运行的运行信息
  • hadoop1服务器:
# jps
26721 NameNode
14851 QuorumPeerMain
50563 Jps
27336 DFSZKFailoverController
  • hadoop2服务器:
# jps
21825 DFSZKFailoverController
39399 Jps
15832 QuorumPeerMain
21482 NameNode
  • hadoop3服务器:
# jps
8070 ResourceManager
7430 QuorumPeerMain
21950 Jps
  • hadoop4服务器:
# jps
6000 ResourceManager
20197 Jps
  • hadoop5服务器:
# jps
16435 DataNode
31735 Jps
14939 JournalNode
15406 NodeManager
  • hadoop6服务器:
# jps
13744 NodeManager
13577 JournalNode
29833 Jps
14526 DataNode
  • hadoop7服务器:
# jps
14324 DataNode
13412 JournalNode
29211 Jps
13580 NodeManager

3.4 启动 hadoop 集群(2)

  • 格式化HDFS
  • 复制元数据信息
  • 格式化ZKFC
  • 启动HDFS
  • 启动YARN
  • 查看每台服务器上运行的运行信息
3.4.1 格式化HDFS

在hadoop1服务器上格式化HDFS,如下所示:

hdfs namenode -format
3.4.2 复制元数据信息

将hadoop1服务器上的 /usr/local/hadoop-3.3.0/tmp目录复制到hadoop2服务器上 /usr/local/hadoop-3.3.0 目录下,在hadoop1服务器上执行如下命令:

scp -r /usr/local/hadoop-3.3.0/tmp hadoop2:/usr/local/hadoop-3.3.0/
3.4.3 格式化ZKFC

在hadoop1服务器上格式化ZKFC,如下所示:

hdfs zkfc -formatZK
3.4.4 启动HDFS

在hadoop1服务器上通过启动脚本启动HDFS,如下所示:

start-dfs.sh
3.4.5 启动YARN

在hadoop1服务器上通过启动脚本启动YARN,如下所示:

start-yarn.sh
3.4.6 查看每台服务器上运行的运行信息
  • hadoop1服务器:
# jps
26721 NameNode
14851 QuorumPeerMain
50563 Jps
27336 DFSZKFailoverController
  • hadoop2服务器:
# jps
21825 DFSZKFailoverController
39399 Jps
15832 QuorumPeerMain
21482 NameNode
  • hadoop3服务器:
# jps
8070 ResourceManager
7430 QuorumPeerMain
21950 Jps
  • hadoop4服务器:
# jps
6000 ResourceManager
20197 Jps
  • hadoop5服务器:
# jps
16435 DataNode
31735 Jps
14939 JournalNode
15406 NodeManager
  • hadoop6服务器:
# jps
13744 NodeManager
13577 JournalNode
29833 Jps
14526 DataNode
  • hadoop7服务器:
# jps
14324 DataNode
13412 JournalNode
29211 Jps
13580 NodeManager

四 Hadoop 的目录结构说明和命令帮助文档

4.1 Hadoop 的目录结构说明

使用命令“ls”查看Hadoop 3.3.0下面的目录,如下所示:

-bash-4.1$ ls
bin  etc  include  lib  libexec  LICENSE.txt  NOTICE.txt  README.txt  sbin  share

下面就简单介绍下每个目录的作用:

  • bin:bin目录是Hadoop最基本的管理脚本和使用脚本所在的目录,这些脚本是sbin目录下管理脚本的基础实现,用户可以直接使用这些脚本管理和使用Hadoop
  • etc:Hadoop配置文件所在的目录,包括:core-site.xml、hdfs-site.xml、mapred-site.xml和yarn-site.xml等配置文件。
  • include:对外提供的编程库头文件(具体的动态库和静态库在lib目录中),这些文件都是用C++定义的,通常用于C++程序访问HDFS或者编写MapReduce程序。
  • lib:包含了Hadoop对外提供的编程动态库和静态库,与include目录中的头文件结合使用。
  • libexec:各个服务对应的shell配置文件所在的目录,可用于配置日志输出目录、启动参数(比如JVM参数)等基本信息。
  • sbin:Hadoop管理脚本所在目录,主要包含HDFS和YARN中各类服务启动/关闭的脚本。
  • share:Hadoop各个模块编译后的Jar包所在目录,这个目录中也包含了Hadoop文档。

4.2 Hadoop 命令帮助文档

  • 1、查看指定目录下内容
hdfs dfs –ls [文件目录]
hdfs dfs -ls -R   /                   //显式目录结构
eg: hdfs dfs –ls /user/wangkai.pt
  • 2、打开某个已存在文件
hdfs dfs –cat [file_path]
eg:hdfs dfs -cat /user/wangkai.pt/data.txt
  • 3、将本地文件存储至hadoop
hdfs dfs –put [本地地址] [hadoop目录]
hdfs dfs –put /home/t/file.txt  /user/t  
  • 4、将本地文件夹存储至hadoop
hdfs dfs –put [本地目录] [hadoop目录] 
hdfs dfs –put /home/t/dir_name /user/t
(dir_name是文件夹名)
  • 5、将hadoop上某个文件down至本地已有目录下
hadoop dfs -get [文件目录] [本地目录]
hadoop dfs –get /user/t/ok.txt /home/t
  • 6、删除hadoop上指定文件
hdfs  dfs –rm [文件地址]
hdfs dfs –rm /user/t/ok.txt
  • 7、删除hadoop上指定文件夹(包含子目录等)
hdfs dfs –rm [目录地址]
hdfs dfs –rmr /user/t
  • 8、在hadoop指定目录内创建新目录
hdfs dfs –mkdir /user/t
hdfs  dfs -mkdir - p /user/centos/hadoop 
  • 9、在hadoop指定目录下新建一个空文件

使用touchz命令:

hdfs dfs  -touchz  /user/new.txt
  • 10、将hadoop上某个文件重命名

使用mv命令:

hdfs dfs –mv  /user/test.txt  /user/ok.txt   (将test.txt重命名为ok.txt)
  • 11、将hadoop指定目录下所有内容保存为一个文件,同时down至本地
hdfs dfs –getmerge /user /home/t
  • 12、将正在运行的hadoop作业kill掉
hadoop job –kill  [job-id]
  • 13.查看帮助
hdfs dfs -help        

五 集群动态增加和删除节点

5.1 动态添加 DataNode 和 NodeManager

5.1.1 查看集群的状态
  • 在hadoop1服务器上查看HDFS各节点状态,如下所示:
# hdfs dfsadmin -report
Configured Capacity: 60028796928 (55.91 GB)
Present Capacity: 45182173184 (42.08 GB)
DFS Remaining: 45178265600 (42.08 GB)
DFS Used: 3907584 (3.73 MB)
DFS Used%: 0.01%
Replicated Blocks:
    Under replicated blocks: 0
    Blocks with corrupt replicas: 0
    Missing blocks: 0
    Missing blocks (with replication factor 1): 0
    Low redundancy blocks with highest priority to recover: 0
    Pending deletion blocks: 0
Erasure Coded Block Groups: 
    Low redundancy block groups: 0
    Block groups with corrupt internal blocks: 0
    Missing block groups: 0
    Low redundancy blocks with highest priority to recover: 0
    Pending deletion blocks: 0

-------------------------------------------------
Live datanodes (3):

Name: 192.168.254.134:9866 (hadoop5)
Hostname: hadoop5
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 1302528 (1.24 MB)
Non DFS Used: 4072615936 (3.79 GB)
DFS Remaining: 15060099072 (14.03 GB)
DFS Used%: 0.01%
DFS Remaining%: 75.26%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 14:23:05 CST 2021
Last Block Report: Thu Nov 18 13:42:32 CST 2021
Num of Blocks: 16

Name: 192.168.254.135:9866 (hadoop6)
Hostname: hadoop6
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 1302528 (1.24 MB)
Non DFS Used: 4082216960 (3.80 GB)
DFS Remaining: 15050498048 (14.02 GB)
DFS Used%: 0.01%
DFS Remaining%: 75.22%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 14:23:06 CST 2021
Last Block Report: Thu Nov 18 08:58:22 CST 2021
Num of Blocks: 16

Name: 192.168.254.136:9866 (hadoop7)
Hostname: hadoop7
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 1302528 (1.24 MB)
Non DFS Used: 4065046528 (3.79 GB)
DFS Remaining: 15067668480 (14.03 GB)
DFS Used%: 0.01%
DFS Remaining%: 75.30%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 14:23:05 CST 2021
Last Block Report: Thu Nov 18 14:09:59 CST 2021
Num of Blocks: 16

可以看到,添加DataNode之前,DataNode总共有3个,分别在hadoop5、hadoop6和hadoop7服务器上

  • 查看YARN各节点的状态
# yarn node -list
Total Nodes:3
         Node-Id         Node-State    Node-Http-Address    Number-of-Running-Containers
   hadoop5:34211            RUNNING         hadoop5:8042                               0
   hadoop7:43419            RUNNING         hadoop7:8042                               0
   hadoop6:36501            RUNNING         hadoop6:8042                               0

可以看到,添加NodeManager之前,NodeManger 进程运行在hadoop5、hadoop6和hadoop7服务器上

5.1.2 动态添加 DataNode 和 NodeManager
  • 在hadoop集群所有节点中的workers文件中新增hadoop4节点,当前修改主机hadoop1:
# vi /usr/local/hadoop-3.3.0/etc/hadoop/workers
hadoop4
hadoop5
hadoop6
hadoop7
  • 将修改的文件拷贝到其他节点上
# scp /usr/local/hadoop-3.3.0/etc/hadoop/workers hadoop2:/usr/local/hadoop-3.3.0/etc/hadoop/
# scp /usr/local/hadoop-3.3.0/etc/hadoop/workers hadoop3:/usr/local/hadoop-3.3.0/etc/hadoop/
# scp /usr/local/hadoop-3.3.0/etc/hadoop/workers hadoop4:/usr/local/hadoop-3.3.0/etc/hadoop/
# scp /usr/local/hadoop-3.3.0/etc/hadoop/workers hadoop5:/usr/local/hadoop-3.3.0/etc/hadoop/
# scp /usr/local/hadoop-3.3.0/etc/hadoop/workers hadoop6:/usr/local/hadoop-3.3.0/etc/hadoop/
# scp /usr/local/hadoop-3.3.0/etc/hadoop/workers hadoop7:/usr/local/hadoop-3.3.0/etc/hadoop/
  • 启动hadoop4服务器上DataNode和NodeManager,如下所示:
# hdfs --daemon start datanode
# yarn --daemin start nodemanager
  • 刷新节点,在hadoop1服务器上执行如下命令,刷新Hadoop集群节点:
# hdfs dfsadmin -refreshNodes
# start-balancer.sh
  • 查看hadoop4节点上的运行进程:
# jps
20768 NodeManager
6000 ResourceManager
20465 DataNode
20910 Jps
5.1.3 再次查看集群的状态
  • 在hadoop1服务器上查看HDFS各节点状态,如下所示:
# hdfs dfsadmin -report
Configured Capacity: 80038395904 (74.54 GB)
Present Capacity: 60257288192 (56.12 GB)
DFS Remaining: 60253356032 (56.12 GB)
DFS Used: 3932160 (3.75 MB)
DFS Used%: 0.01%
Replicated Blocks:
    Under replicated blocks: 0
    Blocks with corrupt replicas: 0
    Missing blocks: 0
    Missing blocks (with replication factor 1): 0
    Low redundancy blocks with highest priority to recover: 0
    Pending deletion blocks: 0
Erasure Coded Block Groups: 
    Low redundancy block groups: 0
    Block groups with corrupt internal blocks: 0
    Missing block groups: 0
    Low redundancy blocks with highest priority to recover: 0
    Pending deletion blocks: 0

-------------------------------------------------
Live datanodes (4):

Name: 192.168.254.133:9866 (hadoop4)
Hostname: hadoop4
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 24576 (24 KB)
Non DFS Used: 4058525696 (3.78 GB)
DFS Remaining: 15075467264 (14.04 GB)
DFS Used%: 0.00%
DFS Remaining%: 75.34%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 15:12:30 CST 2021
Last Block Report: Thu Nov 18 15:10:49 CST 2021
Num of Blocks: 0

Name: 192.168.254.134:9866 (hadoop5)
Hostname: hadoop5
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 1302528 (1.24 MB)
Non DFS Used: 4072738816 (3.79 GB)
DFS Remaining: 15059976192 (14.03 GB)
DFS Used%: 0.01%
DFS Remaining%: 75.26%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 15:12:33 CST 2021
Last Block Report: Thu Nov 18 13:42:32 CST 2021
Num of Blocks: 16

Name: 192.168.254.135:9866 (hadoop6)
Hostname: hadoop6
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 1302528 (1.24 MB)
Non DFS Used: 4082335744 (3.80 GB)
DFS Remaining: 15050379264 (14.02 GB)
DFS Used%: 0.01%
DFS Remaining%: 75.22%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 15:12:31 CST 2021
Last Block Report: Thu Nov 18 14:58:22 CST 2021
Num of Blocks: 16

Name: 192.168.254.136:9866 (hadoop7)
Hostname: hadoop7
Decommission Status : Normal
Configured Capacity: 20009598976 (18.64 GB)
DFS Used: 1302528 (1.24 MB)
Non DFS Used: 4065181696 (3.79 GB)
DFS Remaining: 15067533312 (14.03 GB)
DFS Used%: 0.01%
DFS Remaining%: 75.30%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Thu Nov 18 15:12:33 CST 2021
Last Block Report: Thu Nov 18 14:09:59 CST 2021
Num of Blocks: 16

可以看到,添加DataNode之前,DataNode总共有3个,分别在hadoop4、hadoop5、hadoop6和hadoop7服务器上

  • 查看YARN各节点的状态
# yarn node -list
Total Nodes:4
         Node-Id         Node-State    Node-Http-Address    Number-of-Running-Containers
   hadoop5:34211            RUNNING         hadoop5:8042                               0
   hadoop4:36431            RUNNING         hadoop4:8042                               0
   hadoop7:43419            RUNNING         hadoop7:8042                               0
   hadoop6:36501            RUNNING         hadoop6:8042                               0

5.2 动态删除DataNode和NodeManager

##### 5.2.1 删除DataNode和NodeManager

  • 停止hadoop4上面的DataNode和NodeManager进程,在hadoop4上执行
# hdfs --daemon stop datanode 
# yarn --daemon stop nodemanager 
  • 删除hadoop集群每台主机的workers文件中的hadoop4配置信息
# vi /usr/local/hadoop-3.3.0/etc/hadoop/workers
hadoop5
hadoop6
hadoop7 
  • 刷新节点,在hadoop1服务器上执行如下命令,刷新hadoop集群节点:
# hdfs dfsadmin -refreshNodes # start-balancer.sh 

参考文档:


进击的梦清
7 声望2 粉丝

当你知道的越多,你不知道的就越多!