一. 简述
面对一个机器学习问题,通常有两种策略。一种是开发人员尝试各种模型,选择其中表现最好的模型做重点调参优化。这种策略类似于奥运会比赛,通过强强竞争来选拔最优的运动员,并逐步提高成绩。另一种重要的策略是集各家之长,如同贤明的君主广泛地听取众多谋臣的建议,然后综合考虑,得到最终决策。后一种策略的核心,是将多个分类器的结果统一成一个最终的决策。使用这类策略的机器学习方法统称为集成学习。其中的每个单独的分类器称为基分类器。
俗语说“三个臭皮匠,顶一个诸葛亮”,基分类器就类似于“臭皮匠”,而之前介绍的很多复杂模型可以认为是“诸葛亮”。即使单一一个“臭皮匠”的决策能力不强,我们有效地把多个“臭皮匠”组织结合起来,其决策能力很有可能超过“诸葛亮”。而如何将这些基分类器集成起来。
集成学习不仅在学界的研究热度不减,在业界和众多机器学习竞赛中也有非常成功的应用。例如在Kaggle竞赛中所向披靡的XGBoost,就是成功应用集成学习思想的一个例子。
二. Bossting
Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。Boosting的过程很类似于人类学习的过程,我们学习新知识的过程往往是迭代式的,第一遍学习的时候,我们会记住一部分知识,但往往也会犯一些错误,对于这些错误,我们的印象会很深。第二遍学习的时候,就会针对犯过错误的知识加强学习,以减少类似的错误发生。不断循环往复,直到犯错误的次数减少到很低的程度。
image.png
三. Bagging
Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。其中很著名的算法之一是基于决策树基分类器的随机森林(Random Forest)。为了让基分类器之间互相独立,将训练集分为若干子集(当训练样本数量较少时,子集之间可能有交叠)。Bagging方法更像是一个集体决策的过程,每个个体都进行单独学习,学习的内容可以相同,也可以不同,也可以部分重叠。但由于个体之间存在差异性,最终做出的判断不会完全一致。在最终做决策时,每个个体单独作出判断,再通过投票的方式做出最后的集体决策。
image.png
我们再从消除基分类器的偏差和方差的角度来理解Boosting和Bagging方法的差异。基分类器,有时又被称为弱分类器,因为基分类器的错误率要大于集成分类器。基分类器的错误,是偏差和方差两种错误之和。偏差主要是由于分类器的表达能力有限导致的系统性错误,表现在训练误差不收敛。方差是由于分类器对于样本分布过于敏感,导致在训练样本数较少时,产生过拟合。
Boosting方法是通过逐步聚焦于基分类器分错的样本,减小集成分类器的偏差。Bagging方法则是采取分而治之的策略,通过对训练样本多次采样,并分别训练出多个不同模型,然后做综合,来减小集成分类器的方差。假设所有基分类器出错的概率是独立的,在某个测试样本上,用简单多数投票方法来集成结果,超过半数基分类器出错的概率会随着基分类器的数量增加而下降。
图是Bagging算法的示意图,Model 1、Model 2、Model 3都是用训练集的一个子集训练出来的,单独来看,它们的决策边界都很曲折,有过拟合的倾向。集成之后的模型(红线所示)的决策边界就比各个独立的模型平滑了,这是由于集成的加权投票方法,减小了方差。
image.png
四. 总结
Boosting是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器。他可以用来提高其他弱分类算法的识别率,也就是将其他的弱分类算法作为基分类算法放于Boosting 框架中,通过Boosting框架对训练样本集的操作,得到不同的训练样本子集,用该样本子集去训练生成基分类器;每得到一个样本集就用该基分类算法在该样本集上产生一个基分类器,这样在给定训练轮数 n 后,就可产生 n 个基分类器,然后Boosting框架算法将这 n个基分类器进行加权融合,产生一个最后的结果分类器,在这 n个基分类器中,每个单个的分类器的识别率不一定很高,但他们联合后的结果有很高的识别率,这样便提高了该弱分类算法的识别率。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。