先复习下Hystrix的整体流程
image.png

  1. 构造一个 HystrixCommand或HystrixObservableCommand对象,用于封装请求,并在构造方法配置请求被执行需要的参数;
  2. 执行命令,Hystrix提供了4种执行命令的方法
  3. 判断是否使用缓存响应请求,若启用了缓存,且缓存可用,直接使用缓存响应请求。Hystrix支持请求缓存,但需要用户自定义启动;
  4. 判断熔断器是否打开,如果打开,执行第8步;
  5. 判断线程池/队列/信号量是否已满,已满则执行第8步;
  6. 执行HystrixObservableCommand.construct()或HystrixCommand.run(),如果执行失败或者超时,执行第8步;否则,跳到第9步;
  7. 统计熔断器监控指标;
  8. 走Fallback备用逻辑
  9. 返回请求响应

一,execute方法分析

承接上篇,在HystrixCommandAspect这个切面里会创建HystrixInvokable对象,进而执行。

    Object result;
        try {
            if (!metaHolder.isObservable()) {
                result = CommandExecutor.execute(invokable, executionType, metaHolder);
            } else {
                result = executeObservable(invokable, executionType, metaHolder);
            }
        } catch (HystrixBadRequestException e) {
            throw e.getCause() != null ? e.getCause() : e;
        } catch (HystrixRuntimeException e) {
            throw hystrixRuntimeExceptionToThrowable(metaHolder, e);
        }

这里就来分析下execute的流程。Hystrix是支持同步,异步,观察这个三个模式的,我们只看同步,调用链路是:HystrixCommand.execute() -> queue() -> toObservable()

  public Observable<R> toObservable() {
    .... 一些action的定义 ....
 final Func0<Observable<R>> applyHystrixSemantics = new Func0<Observable<R>>() {
        public Observable<R> call() {
                if(this.commandState.get()).equals(AbstractCommand.CommandState.UNSUBSCRIBED)){
                    return Observable.never() 
                }else{
                    applyHystrixSemantics(AbstractCommand.this);
                }
            }
        };
        
        ...
        return Observable.defer(new Func0<Observable<R>>() {
            public Observable<R> call() {
                ...判断是否开启缓存,对应上整体流程的3步...
                boolean requestCacheEnabled = AbstractCommand.this.isRequestCachingEnabled();
                String cacheKey = AbstractCommand.this.getCacheKey();
                if (requestCacheEnabled) {
                        //拿去缓存,如果存在缓存的话,直接返回
                         HystrixCommandResponseFromCache<R> fromCache = (HystrixCommandResponseFromCache<R>) requestCache.get(cacheKey);
                    if (fromCache != null) {
                        isResponseFromCache = true;
                        return handleRequestCacheHitAndEmitValues(fromCache, _cmd);
                    }
                }

                Observable<R> hystrixObservable = Observable.defer(applyHystrixSemantics).map(wrapWithAllOnNextHooks);
                Observable afterCache;
                if (requestCacheEnabled && cacheKey != null) {
                    ... 缓存后续的一些判断.....
                } else {
                    afterCache = hystrixObservable;
                }

                return     afterCache.doOnTerminate(terminateCommandCleanup)
                    .doOnUnsubscribe(unsubscribeCommandCleanup)
                    .doOnCompleted(fireOnCompletedHook);

            }
        });
}

call里面的方法主要用途:

  • 判断一下是否开启了缓存,如果开启了就直接返回
  • 没有开启或者还没有缓存的时候就执行Observable.defer(applyHystrixSemantics),执行后返回。

熔断器关闭或打开的判断,这对应开头整体流程的第4步。

    private Observable<R> applyHystrixSemantics(AbstractCommand<R> _cmd) {
        this.executionHook.onStart(_cmd);
        //判读是不是熔断了。
        if (this.circuitBreaker.allowRequest()) {
            /**
             *如果使用的是信号量返回TryableSemaphoreActual,不是返回        
             *TryableSemaphoreNoOp,TryableSemaphoreNoOp.tryAcquire()永远都是返回true
              */
           final TryableSemaphore executionSemaphore = getExecutionSemaphore();

            。。。
            //信号量的控制
            if (executionSemaphore.tryAccaquire()) {
                try {
                    this.executionResult = this.executionResult.setInvocationStartTime(System.currentTimeMillis());
                       //如果都成功的话会执行executeCommandAndObserve
                    return this.executeCommandAndObserve(_cmd)
                        .doOnError(markExceptionThrown)
                        .doOnTerminate(singleSemaphoreRelease)
                        .doOnUnsubscribe(singleSemaphoreRelease);
                } catch (RuntimeException var7) {
                    return Observable.error(var7);
                }
            } else {
                return this.handleSemaphoreRejectionViaFallback();
            }
        } else {//执行熔断后的逻辑
            return this.handleShortCircuitViaFallback();
        }
    }

二,熔断器降级分析

接着分析this.circuitBreaker.allowRequest()

static class HystrixCircuitBreakerImpl implements HystrixCircuitBreaker {
        private final HystrixCommandProperties properties;
        private final HystrixCommandMetrics metrics;

        //熔断器是否开启
        /* track whether this circuit is open/closed at any given point in time (default to false==closed) */
        private AtomicBoolean circuitOpen = new AtomicBoolean(false);

        /* when the circuit was marked open or was last allowed to try a 'singleTest' */
        private AtomicLong circuitOpenedOrLastTestedTime = new AtomicLong();

        protected HystrixCircuitBreakerImpl(HystrixCommandKey key, HystrixCommandGroupKey commandGroup, HystrixCommandProperties properties, HystrixCommandMetrics metrics) {
            this.properties = properties;
            this.metrics = metrics;
        }

    
    //当半开半闭状态下,如果这次请求成功而了,则把熔断器设为false,且让统计指标reset
        public void markSuccess() {
            if (circuitOpen.get()) {
                if (circuitOpen.compareAndSet(true, false)) {
                    //win the thread race to reset metrics
                    //Unsubscribe from the current stream to reset the health counts stream.  This only affects the health counts view,
                    //and all other metric consumers are unaffected by the reset
                    metrics.resetStream();
                }
            }
        }

        @Override
        public boolean allowRequest() {
            //判断是否强制打开熔断器
            if (properties.circuitBreakerForceOpen().get()) {
                return false;
            }
            //是否强制关闭熔断器
            if (properties.circuitBreakerForceClosed().get()) {
                isOpen();
                return true;
            }
            return !isOpen() || allowSingleTest();
        }

    
        public boolean allowSingleTest() {
            long timeCircuitOpenedOrWasLastTested = circuitOpenedOrLastTestedTime.get();
            // 1) if the circuit is open
            // 2) and it's been longer than 'sleepWindow' since we opened the circuit
            //熔断器是开启的,且当前时间比开启熔断器的时间加上sleepWindow时间还要长
            if (circuitOpen.get() && System.currentTimeMillis() > timeCircuitOpenedOrWasLastTested + properties.circuitBreakerSleepWindowInMilliseconds().get()) {
                // We push the 'circuitOpenedTime' ahead by 'sleepWindow' since we have allowed one request to try.
                // If it succeeds the circuit will be closed, otherwise another singleTest will be allowed at the end of the 'sleepWindow'.
                //设置当前时间到timeCircuitOpenedOrWasLastTested,
                //如果半开半闭的状态下,如果这次请求成功了则会调用markSuccess,让熔断器状态设为false,
                //如果不成功,就不需要了。
                //案例:半开半合状态下,熔断开启时间为00:00:00,sleepWindow为10s,如果00:00:15秒的时候调用,如果调用失败,
                //在00:00:15至00:00:25秒这个区间都是熔断的,
                if (circuitOpenedOrLastTestedTime.compareAndSet(timeCircuitOpenedOrWasLastTested, System.currentTimeMillis())) {
                    // if this returns true that means we set the time so we'll return true to allow the singleTest
                    // if it returned false it means another thread raced us and allowed the singleTest before we did
                    return true;
                }
            }
            return false;
        }

        @Override
        public boolean isOpen() {
            //判断是否熔断了,circuitOpen是熔断的状态 ,true为熔断,false为不熔断
            if (circuitOpen.get()) {
                return true;
            }

            //获取统计到的指标信息
            HealthCounts health = metrics.getHealthCounts();
             // 一个时间窗口(默认10s钟)总请求次数是否大于circuitBreakerRequestVolumeThreshold 默认为20s
            if (health.getTotalRequests() < properties.circuitBreakerRequestVolumeThreshold().get()) {
                return false;
            }
            // 错误率(总错误次数/总请求次数)小于circuitBreakerErrorThresholdPercentage(默认50%)
            if (health.getErrorPercentage() < properties.circuitBreakerErrorThresholdPercentage().get()) {
                return false;
            } else {
                // 反之,熔断状态将从CLOSED变为OPEN,且circuitOpened==>当前时间戳
                if (circuitOpen.compareAndSet(false, true)) {
                    //并且把当前时间设置到circuitOpenedOrLastTestedTime,可待后面的时间的对比
                    circuitOpenedOrLastTestedTime.set(System.currentTimeMillis());
                    return true;
                } else {
                    return true;
                }
            }
        }

    }

  1. 判断是否强制开启熔断器和强制关闭熔断器
  2. 先判断熔断是否开启,然后判断是否需要熔断,如果需要熔断则个性熔断状态并重置熔断时间为当前时间。熔断的条件是:
    1)时间窗口内(默认10s钟)总请求次数大于20次
    2)时间窗口内(默认10s钟)失败率大于50%
  3. 熔断的情况下就执行allowSingleTest,让开启熔断的都能往下执行。可以执行的条件是:
    1)circuitOpen.get() 为true,确保是普通的熔断,而不是强制熔断
    2)当前时间比开启熔断器的时间加上sleepWindow时间还要长
  4. 在半开半必的状态下请求成功了,再调用markSuccess()方法,从而将熔断器关闭并重新统计各项指标
allowSingleTest返回true的简单的可以叫为半开半闭状态

三,信号量隔离的分析

这个对应整体流程里的第5步

  /* package */static class TryableSemaphoreActual implements TryableSemaphore {
        protected final HystrixProperty<Integer> numberOfPermits;
        private final AtomicInteger count = new AtomicInteger(0);

        public TryableSemaphoreActual(HystrixProperty<Integer> numberOfPermits) {
            this.numberOfPermits = numberOfPermits;
        }

        @Override
        public boolean tryAcquire() {
            int currentCount = count.incrementAndGet();
            if (currentCount > numberOfPermits.get()) {
                count.decrementAndGet();
                return false;
            } else {
                return true;
            }
        }
    }
        
        
    /* package */static class TryableSemaphoreNoOp implements TryableSemaphore {

        public static final TryableSemaphore DEFAULT = new TryableSemaphoreNoOp();

        @Override
        public boolean tryAcquire() {
            return true;
        }
    }

开启了信号量隔离,TryableSemaphoreActual会把信号量增加1,如果currentCount > numberOfPermits.get()的时候就返回false,信号量降级。
没有开启信号量隔离,TryableSemaphoreNoOp.tryAcquire()永远都是返回true。

如果没熔断,没使用信号量,则会往下执行executeCommandAndObserve。

    private Observable<R> executeCommandAndObserve(final AbstractCommand<R> _cmd) {
        final HystrixRequestContext currentRequestContext = HystrixRequestContext.getContextForCurrentThread();
        ....
        Observable<R> execution;
        //判断是否超时隔离
        if (properties.executionTimeoutEnabled().get()) {
            execution = executeCommandWithSpecifiedIsolation(_cmd)
                    .lift(new HystrixObservableTimeoutOperator<R>(_cmd));
        } else {
            execution = executeCommandWithSpecifiedIsolation(_cmd);
        }

        //markEmits,markOnCompleted,handleFallback,setRequestContext都是匿名内部类,都在这个方法里定义了,
        return execution.doOnNext(markEmits)
                .doOnCompleted(markOnCompleted)
                .onErrorResumeNext(handleFallback)
                .doOnEach(setRequestContext);
    }

四,超时隔离分析

  private static class HystrixObservableTimeoutOperator<R> implements Operator<R, R> {

        final AbstractCommand<R> originalCommand;

        public HystrixObservableTimeoutOperator(final AbstractCommand<R> originalCommand) {
            this.originalCommand = originalCommand;
        }

        @Override
        public Subscriber<? super R> call(final Subscriber<? super R> child) {
            final CompositeSubscription s = new CompositeSubscription();
            // if the child unsubscribes we unsubscribe our parent as well
            child.add(s);
            //超时的时候抛出new HystrixTimeoutException()
            final HystrixContextRunnable timeoutRunnable = new HystrixContextRunnable(originalCommand.concurrencyStrategy, new Runnable() {
                @Override
                public void run() {
                    child.onError(new HystrixTimeoutException());
                }
            });

            //设置定时调度
            TimerListener listener = new TimerListener() {

                //定时触发的方法
                @Override
                public void tick() {
                    //把状态从未执行设为timeout
                    if (originalCommand.isCommandTimedOut.compareAndSet(TimedOutStatus.NOT_EXECUTED, TimedOutStatus.TIMED_OUT)) {
                        // report timeout failure
                        originalCommand.eventNotifier.markEvent(HystrixEventType.TIMEOUT, originalCommand.commandKey);
                        // shut down the original request
                        s.unsubscribe();
                        timeoutRunnable.run();
                    }
                }
                //获取定时的的时间
                @Override
                public int getIntervalTimeInMilliseconds() {
                    return originalCommand.properties.executionTimeoutInMilliseconds().get();
                }
            };

            final Reference<TimerListener> tl = HystrixTimer.getInstance().addTimerListener(listener);
            // set externally so execute/queue can see this
            originalCommand.timeoutTimer.set(tl);
            /**
             * If this subscriber receives values it means the parent succeeded/completed
             */
            Subscriber<R> parent = new Subscriber<R>() {
                ...
            };

            // if s is unsubscribed we want to unsubscribe the parent
            s.add(parent);

            return parent;
        }

    }

    public Reference<TimerListener> addTimerListener(final TimerListener listener) {
        startThreadIfNeeded();
        // add the listener

        Runnable r = new Runnable() {

            @Override
            public void run() {
                try {
                    listener.tick();
                } catch (Exception e) {
                    logger.error("Failed while ticking TimerListener", e);
                }
            }
        };
//getIntervalTimeInMilliseconds获取定时时间
        ScheduledFuture<?> f = executor.get().getThreadPool().scheduleAtFixedRate(r, listener.getIntervalTimeInMilliseconds(), listener.getIntervalTimeInMilliseconds(), TimeUnit.MILLISECONDS);
        return new TimerReference(listener, f);
    }

主要逻辑,定义了一个定时器TimerListener,里面定时的时间就是我们设置的@HystrixCommand的超时的时间。如果超时了执行:

  1. 把状态从NOT_EXECUTED设置为TIMED_OUT
  2. 发送TIMEOUT事件
  3. s.unsubscribe()取消事件订阅
  4. timeoutRunnable.run();抛出timeoutRunnable异常

归纳一下就是设置了一个定时器,定时时间是我们设置的超时时间,如果定时时间到了,我们就改变相应的状态,发送相应的内部事件,取消Obserable的订阅,抛出异常,而做到一个超时的隔离。

再看看executeCommandWithSpecifiedIsolation方法

private Observable<R> executeCommandWithSpecifiedIsolation(final AbstractCommand<R> _cmd) {
        if (properties.executionIsolationStrategy().get() == ExecutionIsolationStrategy.THREAD) {
            // mark that we are executing in a thread (even if we end up being rejected we still were a THREAD execution and not SEMAPHORE)
            return Observable.defer(new Func0<Observable<R>>() {
                @Override
                public Observable<R> call() {
                      ...
                    metrics.markCommandStart(commandKey, threadPoolKey, ExecutionIsolationStrategy.THREAD);

                    if (isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT) {
                          ...
                        return Observable.error(new RuntimeException("timed out before executing run()"));
                    }
                    if (threadState.compareAndSet(ThreadState.NOT_USING_THREAD, ThreadState.STARTED)) {
                               ....
                        try {
                            executionHook.onThreadStart(_cmd);
                            executionHook.onRunStart(_cmd);
                            executionHook.onExecutionStart(_cmd);
                            //最后执行这个
                            return getUserExecutionObservable(_cmd);
                        } catch (Throwable ex) {
                            return Observable.error(ex);
                        }
                    } else {
                        //command has already been unsubscribed, so return immediately
                        return Observable.error(new RuntimeException("unsubscribed before executing run()"));
                    }
                }
            }).doOnTerminate(...).doOnUnsubscribe(...)
              //这个方法是用于指定一个线程池去执行我们被观察者observable触发时的方法
              .subscribeOn(threadPool.getScheduler(new Func0<Boolean>() {
                @Override
                public Boolean call() {
                    return properties.executionIsolationThreadInterruptOnTimeout().get() && _cmd.isCommandTimedOut.get() == TimedOutStatus.TIMED_OUT;
                }
            }));
        } else {
          ...
        }
    }

五,指定线程池执行方法

在executeCommandWithSpecifiedIsolation这个方法里的subscribeOn调用用于指定一个线程池去执行我们被观察者observable触发时的方法

    /* package */static class HystrixThreadPoolDefault implements HystrixThreadPool {
        private static final Logger logger = LoggerFactory.getLogger(HystrixThreadPoolDefault.class);

        private final HystrixThreadPoolProperties properties;
        private final BlockingQueue<Runnable> queue;
        private final ThreadPoolExecutor threadPool;
        private final HystrixThreadPoolMetrics metrics;
        private final int queueSize;

        ...
 

        @Override
        public Scheduler getScheduler(Func0<Boolean> shouldInterruptThread) {
            touchConfig();
            return new HystrixContextScheduler(HystrixPlugins.getInstance().getConcurrencyStrategy(), this, shouldInterruptThread);
        }

        //动态调整线程池的大小
        // allow us to change things via fast-properties by setting it each time
        private void touchConfig() {
            final int dynamicCoreSize = properties.coreSize().get();
            final int configuredMaximumSize = properties.maximumSize().get();
            int dynamicMaximumSize = properties.actualMaximumSize();
            final boolean allowSizesToDiverge = properties.getAllowMaximumSizeToDivergeFromCoreSize().get();
            boolean maxTooLow = false;

            if (allowSizesToDiverge && configuredMaximumSize < dynamicCoreSize) {
                dynamicMaximumSize = dynamicCoreSize;
                maxTooLow = true;
            }

            // In JDK 6, setCorePoolSize and setMaximumPoolSize will execute a lock operation. Avoid them if the pool size is not changed.
            if (threadPool.getCorePoolSize() != dynamicCoreSize || (allowSizesToDiverge && threadPool.getMaximumPoolSize() != dynamicMaximumSize)) {
                  ...
                threadPool.setCorePoolSize(dynamicCoreSize);
                threadPool.setMaximumPoolSize(dynamicMaximumSize);
            }

            threadPool.setKeepAliveTime(properties.keepAliveTimeMinutes().get(), TimeUnit.MINUTES);
        }
}


public class HystrixContextScheduler extends Scheduler {

    private final HystrixConcurrencyStrategy concurrencyStrategy;
    private final Scheduler actualScheduler;
    private final HystrixThreadPool threadPool;
    
    。。。
  
    public HystrixContextScheduler(HystrixConcurrencyStrategy concurrencyStrategy, HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
        this.concurrencyStrategy = concurrencyStrategy;
        this.threadPool = threadPool;
        this.actualScheduler = new ThreadPoolScheduler(threadPool, shouldInterruptThread);
    }

    @Override
    public Worker createWorker() {
             // 构建一个默认的Worker,这里的actualScheduler就是ThreadPoolScheduler
        //actualScheduler.createWorker()就是ThreadPoolWorker
        return new HystrixContextSchedulerWorker(actualScheduler.createWorker());
    }

    
    //HystrixContextSchedulerWorker类
    private class HystrixContextSchedulerWorker extends Worker {

        private final Worker worker;

        private HystrixContextSchedulerWorker(Worker actualWorker) {
            this.worker = actualWorker;
        }

           ...

        @Override
        public Subscription schedule(Action0 action) {
            if (threadPool != null) {
                if (!threadPool.isQueueSpaceAvailable()) {
                    throw new RejectedExecutionException("Rejected command because thread-pool queueSize is at rejection threshold.");
                }
            }
            //这里的worker其实就是ThreadPoolWorker
            return worker.schedule(new HystrixContexSchedulerAction(concurrencyStrategy, action));
        }

    }

    //ThreadPoolScheduler类
    private static class ThreadPoolScheduler extends Scheduler {

        private final HystrixThreadPool threadPool;
        private final Func0<Boolean> shouldInterruptThread;

        public ThreadPoolScheduler(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
            this.threadPool = threadPool;
            this.shouldInterruptThread = shouldInterruptThread;
        }

        @Override
        public Worker createWorker() {
            //默认的worker为:ThreadPoolWorker
            return new ThreadPoolWorker(threadPool, shouldInterruptThread);
        }

    }

    
//ThreadPoolWorker类
    private static class ThreadPoolWorker extends Worker {

        private final HystrixThreadPool threadPool;
        private final CompositeSubscription subscription = new CompositeSubscription();
        private final Func0<Boolean> shouldInterruptThread;

        public ThreadPoolWorker(HystrixThreadPool threadPool, Func0<Boolean> shouldInterruptThread) {
            this.threadPool = threadPool;
            this.shouldInterruptThread = shouldInterruptThread;
        }
        ...
        @Override
        public Subscription schedule(final Action0 action) {
            if (subscription.isUnsubscribed()) {
                // don't schedule, we are unsubscribed
                return Subscriptions.unsubscribed();
            }

            // This is internal RxJava API but it is too useful.
            ScheduledAction sa = new ScheduledAction(action);

            subscription.add(sa);
            sa.addParent(subscription);
            // 获取线程池
            ThreadPoolExecutor executor = (ThreadPoolExecutor) threadPool.getExecutor();
            // 将包装后的HystrixCommand submit到线程池,然后返回FutureTask
            FutureTask<?> f = (FutureTask<?>) executor.submit(sa);
            sa.add(new FutureCompleterWithConfigurableInterrupt(f, shouldInterruptThread, executor));

            return sa;
        }

       ...
    }


}

几个内部类的作用:

  • HystrixContextSchedulerWorker: 对外提供schedule()方法,这里会判断线程池队列是否已经满,如果满了这会抛出异常:Rejected command because thread-pool queueSize is at rejection threshold。 如果配置的队列大小为-1 则默认返回true
  • ThreadPoolScheduler:执行createWorker()方法,默认使用ThreadPoolWorker()类
  • ThreadPoolWorker: 执行command的核心逻辑
    private Observable<R> getUserExecutionObservable(final AbstractCommand<R> _cmd) {
        Observable<R> userObservable;

        try {
            userObservable = getExecutionObservable();
        } catch (Throwable ex) {
            // the run() method is a user provided implementation so can throw instead of using Observable.onError
            // so we catch it here and turn it into Observable.error
            userObservable = Observable.error(ex);
        }

        return userObservable
                .lift(new ExecutionHookApplication(_cmd))
                .lift(new DeprecatedOnRunHookApplication(_cmd));
    }
   @Override
    final protected Observable<R> getExecutionObservable() {
        return Observable.defer(new Func0<Observable<R>>() {
            @Override
            public Observable<R> call() {
                try {
                    //可以看到run()方法了。 HystrixCommand.run()其实就是我们自己写的代码里的方法
                    return Observable.just(run());
                } catch (Throwable ex) {
                    return Observable.error(ex);
                }
            }
        }).doOnSubscribe(new Action0() {
            @Override
            public void call() {
                // Save thread on which we get subscribed so that we can interrupt it later if needed
                executionThread.set(Thread.currentThread());
            }
        });
    }

最后可以看到会调用Observable.just(run()) ,这个就是我们我们自己写的代码里的方法,到这里就是我们整体的执行过程了。


步履不停
38 声望13 粉丝

好走的都是下坡路


下一篇 »
sentinel介绍