1

Why SkyWalking?

Skywalking is an excellent APM (application performance monitor) application performance monitoring system. It is designed for micro-service scenarios and can easily implement performance monitoring and link tracking in micro-service scenarios such as Spring cloud.
The v8.x version also supports the log collection function, which can replace ELK as a distributed log collection solution. One system realizes multiple capabilities of 监控+追踪+日志 , effectively reducing the complexity of operation and maintenance under microservices.

Let's take Spring cloud as an example to play Skywalking together

1. Environment preparation and installation

To implement 监控+追踪+日志 we need to install basic APM and Java agent.

  • Go to the download page: SkyWalking Download
  • Download SkyWalking APM and Java agent following two zip files:

SkyWalking组件

  • After downloading, unzip it and try to run /apache-skywalking-apm-bin/bin/startup.bat (or startup.sh )
  • Visit http://localhost:8080/ to see the SkyWalking monitoring UI

SkyWalking console

The above installation is a direct installation. For installation methods such as docker, please refer to the official SkyWalking documentation

2. Configure SkyWalking log collection (logback as an example)

  • The logback plugin package that depends on SkyWalking in the pom:

     <!-- SkyWalking log collection -->
    <dependency>
      <groupId>org.apache.skywalking</groupId>
      <artifactId>apm-toolkit-logback-1.x</artifactId>
      <version>8.9.0</version>
    </dependency>
  • Add/modify logback.xml to enable the appender provided by SkyWalking. The sample configuration is as follows:

     <?xml version="1.0" encoding="UTF-8"?>
    <configuration scan="true" scanPeriod="10 seconds">
    
      <appender name="stdout" class="ch.qos.logback.core.ConsoleAppender">
          <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
              <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
                  <Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%tid] [%thread] %-5level %logger{36} -%msg%n</Pattern>
              </layout>
          </encoder>
      </appender>
    
      <appender name="grpc" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
          <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
              <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                  <Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%thread] %-5level %logger{36} -%msg%n</Pattern>
              </layout>
          </encoder>
      </appender>
      
      <root level="INFO">
          <appender-ref ref="stdout"/>
          <appender-ref ref="grpc"/>
      </root>
    </configuration>

    3. Configure the Java agent

  • Configure the Java agent in the IDEA development environment:

    • Open the Edit Run/Debug Configurations of each service application and add the following VM options:

       -javaagent:D:/Server/skywalking-agent/skywalking-agent.jar -Dskywalking.agent.service_name=yourAppName -Dskywalking.collector.backend_service=localhost:11800

SkyWalking console

4. Start each service application under the microservice

Then enter your spring cloud microservice front-end UI to do some operations to verify monitoring and logs.

5. Access the SkyWalking UI console http://localhost:8080/

  • Example of performance monitoring effect (which interface should be optimized is clear):
    SkyWalking console
  • Example of link tracking effect (slow is also seen in which link):
    SkyWalking console
  • Example of log collection effect:
    SkyWalking console

Note: By default, SkyWalking uses H2 database storage, and does not support full-text search to check log content. It is recommended to switch to ElasticSearch storage for the production environment.


Diboot - A low-code development framework written with less performance and better


JerryMa
92 声望26 粉丝

Diboot 低代码开发平台作者