1
头图

概述

Prometheus 作为云原生和容器平台监控的事实标准,本期我们来看一下如何通过 Prometheus 配置 SLO 监控和告警.

SLO 告警

SLO 的告警, 根据 Google SRE 官方实践, 建议使用如下几个维度的告警:

  1. Burn Rate(消耗率)Alerts
  2. Error Budget (错误预算)Alerts

Error Budget

假设我们与用户的合同规定,在 7天内的可用性为 99.9%。这相当于10分钟的Error Budget。

Error Budget 的一种参考实现:

  1. 计算过去 7 天(或更长如30天, 或更短如3天)的error budget
  2. 告警级别:

    1. CRITICAL: error budget >= 90%(或100%)(即过去7天已经不可用9.03分钟; 即availability已达到99.91%, 马上接近99.9% 危险阈值)
    2. WARNING: error budget >= 75%

📝Notes:

Key Words:

  • SLO
  • 时间窗口
  • 阈值

Burn Rate

假设我们与用户的合同规定,在 30 天内的可用性为 99.9%。这相当于43分钟的Error Budget。如果我们以小增量的小故障来消耗这43分钟,我们的用户可能仍然很高兴和高效。但是,如果我们在关键业务时间发生 43 分钟的单次中断,该怎么办?可以肯定地说,我们的用户会对这种体验感到非常不满意!

为了解决这个问题,Google SRE引入Burn Rate。定义很简单:如果我们在示例中在 30 天内精确地消耗 43 分钟,则将其称为 1 的消耗速率。如果我们以两倍的速度将其消耗,例如,在15天内消耗殆尽,消耗速率为2,依此类推。如您所见,这使我们能够跟踪长期合规性,并就严重的短期问题发出警报。

下图说明了多种burn rate的概念。X 轴表示时间,Y 轴表示剩余error budget。

SLO Burn Rate

📝Notes:

本质上, Error Budget >= 100% 的告警, 其实就是 Burn Rate 为 1 的这种特殊情况.

Burn Rate 的一种参考实践:

  1. 计算过去1小时(或者更短的窗口5m, 或者更长的窗口3h-6h...)的time window 的 burn rate
  2. 告警级别:

    1. CRITICAL: burn rate >= 14.4(即按照这个速率, 2天内30天的availability error budget就会用尽)
    2. WARNING: burn rate >=7.2 (即按照这个速率, 4天内30天的availability error budget就会用尽)

使用 Prometheus 配置 SLO 监控和告警实战

这里以 2 个典型的 SLO 为例:

  1. HTTP 请求的错误率大于 99.9%(即 在30天的不可用时间为: 43min 11s)
  2. 99% 的 HTTP 请求延迟时间大于 100ms

HTTP 请求错误率

基本信息:

  1. 指标为: http_requests_total
  2. label 为: {job=busi}
  3. 错误的定义: http code 为 5xx, 即 code=~"5xx"

完整的 Prometheus Rule 如下:

groups:
- name: SLOs-http_requests_total
  rules:
  # 过去5m的http请求错误率
  - expr: |
      sum(rate(http_requests_total{job="busi",code=~"5.."}[5m]))
      /
      sum(rate(http_requests_total{job="busi"}[5m]))
    labels:
      job: busi
    record: http_requests_total:burnrate5m
  # 过去30m的
  - expr: |
      sum(rate(http_requests_total{job="busi",code=~"5.."}[30m]))
      /
      sum(rate(http_requests_total{job="busi"}[30m]))
    labels:
      job: busi
    record: http_requests_total:burnrate30m
  # 过去1h的
  - expr: |
      sum(rate(http_requests_total{job="busi",code=~"5.."}[1h]))
      /
      sum(rate(http_requests_total{job="busi"}[1h]))
    labels:
      job: busi
    record: http_requests_total:burnrate1h
  # 过去6h的
  - expr: |
      sum(rate(http_requests_total{job="busi",code=~"5.."}[6h]))
      /
      sum(rate(http_requests_total{job="busi"}[6h]))
    labels:
      job: busi
    record: http_requests_total:burnrate6h
  # 过去1d的        
  - expr: |
      sum(rate(http_requests_total{job="busi",code=~"5.."}[1d]))
      /
      sum(rate(http_requests_total{job="busi"}[1d]))
    labels:
      job: busi
    record: http_requests_total:burnrate1d
  # 过去3d的
  - expr: |
      sum(rate(http_requests_total{job="busi",code=~"5.."}[3d]))
      /
      sum(rate(http_requests_total{job="busi"}[3d]))
    labels:
      job: busi
    record: http_requests_total:burnrate3d
  # 🐾短期内快速燃尽
  # 过去5m和过去1h的燃尽率都大于 14.4
  - alert: ErrorBudgetBurn
    annotations:
      message: 'High error budget burn for job=busi (current value: {{ $value }})'
    expr: |
      sum(http_requests_total:burnrate5m{job="busi"}) > (14.40 * (1-0.99900))
      and
      sum(http_requests_total:burnrate1h{job="busi"}) > (14.40 * (1-0.99900))
    for: 2m
    labels:
      job: busi
      severity: critical
  # 🐾中期时间内燃尽过快
  # 过去30m和过去6h的燃尽率都大于7.2
  - alert: ErrorBudgetBurn
    annotations:
      message: 'High error budget burn for job=busi (current value: {{ $value }})'
    expr: |
      sum(http_requests_total:burnrate30m{job="busi"}) > (7.20 * (1-0.99900))
      and
      sum(http_requests_total:burnrate6h{job="busi"}) > (7.20 * (1-0.99900))
    for: 15m
    labels:
      job: busi
      severity: warning
  # 🐾长期内错误预算超出
  # 过去6h和过去3天的错误预算已燃尽
  - alert: ErrorBudgetAlert
    annotations:
      message: 'High error budget burn for job=busi (current value: {{ $value }})'
    expr: |
      sum(http_requests_total:burnrate6h{job="busi"}) > (1.00 * (1-0.99900))
      and
      sum(http_requests_total:burnrate3d{job="busi"}) > (1.00 * (1-0.99900))
    for: 3h
    labels:
      job: busi
      severity: warning

HTTP 请求延迟

基本信息:

  1. 指标为: http_request_duration_seconds
  2. label 为: {job=busi}
  3. 99% 的 HTTP 请求响应时间都应小于等于 100ms
  4. 只计算成功的请求(毕竟上面已经算过错误率了)

完整的 Prometheus Rule 如下:

groups:
- name: SLOs-http_request_duration_seconds
  rules:
  # 过去5m HTTP 请求响应时间大于100ms(0.1s)的百分比
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[5m]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[5m]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate5m
  # 过去30m的
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[30m]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[30m]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate30m
  # 过去1h的
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[1h]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[1h]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate1h
  # 过去2h的
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[2h]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[2h]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate2h
  # 过去6h的
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[6h]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[6h]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate6h
  # 过去1d的
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[1d]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[1d]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate1d
  # 过去3d的
  - expr: |
      1 - (
        sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[3d]))
        /
        sum(rate(http_request_duration_seconds_count{job="busi"}[3d]))
      )
    labels:
      job: busi
      latency: "0.1"
    record: latencytarget:http_request_duration_seconds:rate3d  
  # 🐾HTTP 相应时间SLO短中期内快速燃尽
  # - 过去5m和过去1h燃尽率大于14.4
  # - 或: 过去30m和过去6h燃尽率大于7.2
  - alert: LatencyBudgetBurn
    annotations:
      message: 'High requests latency budget burn for job=busi,latency=0.1 (current value: {{ $value }})'
    expr: |
      (
        latencytarget:http_request_duration_seconds:rate1h{job="busi",latency="0.1"} > (14.4*(1-0.99))
        and
        latencytarget:http_request_duration_seconds:rate5m{job="busi",latency="0.1"} > (14.4*(1-0.99))
      )
      or
      (
        latencytarget:http_request_duration_seconds:rate6h{job="busi",latency="0.1"} > (7.2*(1-0.99))
        and
        latencytarget:http_request_duration_seconds:rate30m{job="busi",latency="0.1"} > (7.2*(1-0.99))
      )
    labels:
      job: busi
      latency: "0.1"
      severity: critical
  - alert: LatencyBudgetBurn
    annotations:
      message: 'High requests latency budget burn for job=busi,latency=0.1 (current value: {{ $value }})'
    expr: |
      (
        latencytarget:http_request_duration_seconds:rate1d{job="busi",latency="0.1"} > (3*(1-0.99))
        and
        latencytarget:http_request_duration_seconds:rate2h{job="busi",latency="0.1"} > (3*(1-0.99))
      )
      or
      (
        latencytarget:http_request_duration_seconds:rate3d{job="busi",latency="0.1"} > ((1-0.99))
        and
        latencytarget:http_request_duration_seconds:rate6h{job="busi",latency="0.1"} > ((1-0.99))
      )
    labels:
      job: busi
      latency: "0.1"
      severity: warning

🎉🎉🎉

总结

Prometheus 作为云原生和容器平台监控的事实标准,本期我们来看一下如何通过 Prometheus 配置 SLO 监控和告警.

我们例举了 2 个典型的 SLO - HTTP 响应时间和错误率.
错误率的非常好理解, 响应时间的有点绕, 需要大家慢慢消化下.

😼😼😼

📚️参考文档


东风微鸣云原生
30 声望9 粉丝