- 碎片化。在部署过程中,由于深度学习框架、硬件与平台的多样化,开源社区以及各硬件厂商存在大量分散的工具链,很难通过一款产品,同时满足开发者在服务端、移动端和边缘端,以及服务化场景部署的需求。
- 成本高。这与部署工具链碎片化的现状相关。开发者在不同推理引擎、不同硬件上部署的流程、代码API形态和体验都不尽相同,这带来了很高的学习成本。
- 速度慢。部署中最大的问题是如何将模型在特定的硬件上实现高性能的优化。尽管当前模型套件提供各种轻量级的模型,或开源社区各类推理引擎不断优化模型的推理速度。但在实际部署中,开发者更关注的是模型端到端的优化,包括预处理加速、模型压缩、量化等等。而目前的推理产品都缺少这种端到端的体验。
因此飞桨全新发布新一代部署产品——FastDeploy部署工具,为产业实践中需要推理部署的开发者提供最优解。
- 目前FastDeploy底层包含了飞桨的推理引擎、开源社区硬件厂商的推理引擎,结合飞桨统一硬件适配技术可以满足开发者将模型部署到主流AI硬件的需求。
- 模型压缩与转换工具使得开发者通过统一的部署API实现多框架模型的推理,同时,飞桨自研的PaddleSlim为大家提供更易用、性能更强的模型自动化压缩功能。
- 而在统一的部署API之上,我们还提供了丰富的多场景部署工程,满足开发者对于服务端、移动端、网页端的端到端部署需求。
FastDeploy三大特点:
作为全场景高性能部署工具,FastDeploy致力于打造三个特点,与上述提及的三个痛点相对应,分别是全场景、简单易用和极致高效。
01 全场景
全场景是指FastDeploy的多端多引擎加速部署、多框架模型支持和多硬件部署能力。
多端部署
FastDeploy支持模型在多种推理引擎上部署,底层的推理后端,包括服务端Paddle Inference、移动端和边缘端的Paddle Lite以及网页前端的Paddle.js,并且在上层提供统一的多端部署API。这里以PaddleDetection的PP-YOLOE模型部署为例,用户只需要一行代码,便可实现在不同推理引擎后端间的灵活切换。
使用Paddle Inference部署:
import fastdeploy as fd
import cv2
im = cv2.imread("test.jpg")
# 通过RuntimeOption配置后端
option = fd.RuntimeOption()
option.use_paddle_infer_backend()
# 加载飞桨PPYOLOE检测模型
model = fd.vision.detection.PPYOLOE(“model.pdmodel”,
“model.pdiparams”,
“infer_cfg.yml”,
runtime option=option)
result = model.predict(im)
使用OpenVINO部署:
import fastdeploy as fd
import cv2
im = cv2.imread("test.jpg")
# 通过RuntimeOption配置后端
option = fd.RuntimeOption()
option.use_openvino_backend()
# 加载飞桨PPYOLOE检测模型
model = fd.vision.detection.PPYOLOE(“model.pdmodel”,
“model.pdiparams”,
“infer_cfg.yml”,
runtime option=option)
result = model.predict(im)
多框架支持
在多框架模型部署的支持上,FastDeploy集成了X2Paddle和Paddle2ONNX两款模型转换工具。截至目前,飞桨的转换工具支持多种深度学习框架及ONNX的交换格式。在百度公司内部以及开源社区,我们支持了不同领域300多种模型的转换,目前也在根据用户的需求持续迭代。
在FastDeploy1.0正式版本中,飞桨统一了模型转换的功能入口。开发者只需要一行命令就可以完成其他深度学习框架到飞桨的转换,以及飞桨模型与ONNX交换格式的互转,帮助开发者使用FastDeploy快速体验飞桨的模型压缩,以及推理引擎端到端的优化效果。
多硬件适配
飞桨硬件适配统一方案
在多硬件适配上,FastDeploy基于飞桨硬件适配统一方案进行扩展,实现最大化AI模型部署通路。
在最新版本中,FastDeploy和英特尔、英伟达、瑞芯微和GraphCore等硬件厂商完成了硬件适配。期待更多硬件生态伙伴使用FastDeploy拓展更多领域,完成更多模型的端到端推理部署。
02 简单易用
FastDeploy提供主流产业场景和SOTA模型端到端的部署,以及多端部署的统一开发体验。
在FastDeploy的部署套件中,飞桨提供覆盖20多个主流AI场景,以及150多个SOTA产业模型的端到端部署示例,让开发者从场景入手,快速通过自行训练或预训练模型完成部署工作。
Python部署:
import fastdeploy.vision as vision
model = vision.detection.PPYOLOE(“model.pdmodel”,
“model.pdiparams”,
“infer_cfg.yml”)
result = model.predict(im)
C++部署:
#include “fastdeploy/vision.h”
namespace vision = fastdeploy::vision;
int main(int argc, char* argv[]) {
...
auto model = vision::detection::PPYOLOE(“model.pdmodel”,
”model.pdiparams”,
”infer_cfg.yml”)
vision::DetectionResult result;
model.Predict(image, &result);
...
在开发体验上,FastDeploy从统一的角度设计了部署的API,确保在不同端和不同开发语言下,开发者能够拥有统一的开发体验,并且使用尽可能少的代码实现模型端到端的高性能推理。
此外,飞桨联动EasyEdge提供了10多个端到端的部署工程Demo,帮助开发者快速体验AI模型效果,满足开发者产业使用中快速集成需求。同时EasyEdge提供了更易用的开发平台,便于开发者体验。
03 极致高效
FastDeploy的极致高效,包括模型无损量化压缩、推理部署软硬协同加速和模型端到端全流程的部署性能优化。
无损量化压缩,软硬协同加速
FastDeploy集成了飞桨压缩和推理的特色,实现了自动化压缩与推理引擎深度联动,为开发者提供更高效的量化推理部署体验。以PP-LCNetV2和ERNIE 3.0模型为例,传统的KL离线量化会明显降低模型压缩后的精度,但在FastDeploy的最新版本中,飞桨通过集成PaddleSlim最新的ACT自动压缩技术,实现模型几乎无损的压缩功能。
如果压缩后的模型想达到更高的推理性能,需要后端推理引擎的软硬件协同优化工作。基于最新版本的Paddle Inference,在CPU上通过英特尔VNNI指令集以及GPU上深度融合和优化,性能全面领先ONNX Runtime。在移动端上,Paddle Lite对ARM v9指令集进行了全面适配,INT8推理性能相对比同类的产品有更大幅度的性能提升。
端到端全流程优化
但也正如上文提到,模型推理只是端到端部署中的一个环节,所以FastDeploy在端到端的全流程部署上做了大量优化工作,并且对于此前飞桨的CV模型部署代码进行了全面优化升级。
在CPU上,对预处理操作进行融合,减少数据预处理过程中内存创建、拷贝和计算量。在GPU上,飞桨引入了自定义的CUDA预处理算子优化,实现了服务端上模型端到端部署性能的大幅提升。在移动端,飞桨与百度视觉技术部合作,通过百度在业务实践中自研打磨的高性能图像预处理库FlyCV,显著提升图像数据预处理的性能。
总体而言,本次全新发布的FastDeploy部署套件可以满足开发者全场景的高性能部署需求,大幅提升在AI产业部署中的开发效率。FastDeploy的目标和使命是让开发者简单高效地将AI模型部署到任何场景。目前,开源项目仍在高效迭代中,每月都会有新版本和新部署功能升级发布。欢迎大家点击阅读原文或访问下方链接关注。
FastDeploy开源项目地址:https://github.com/PaddlePadd...
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。