为什么要compact?

  • 待删除的数据未被真正删除,仅记录在tombstone文件中;
  • 相邻block的index文件一般情况是相同,compact可以减少disk usage;
  • 当查询的结果涉及N个block时,blocks数据的合并会耗费大量资源;

compact不会无止境的运行,prometheus中限制单个block最长的时间跨度=31d(744hour),或者1/10的retentionTime,两者取最小值。

{ // Max block size  settings.
   if cfg.tsdb.MaxBlockDuration == 0 {
      maxBlockDuration, err := model.ParseDuration("31d")
      // When the time retention is set and not too big use to define the max block duration.
      if cfg.tsdb.RetentionDuration != 0 && cfg.tsdb.RetentionDuration/10 < maxBlockDuration {
         maxBlockDuration = cfg.tsdb.RetentionDuration / 10
      }
      cfg.tsdb.MaxBlockDuration = maxBlockDuration
   }
}

compact的过程中,涉及到基于retention的数据删除,可以基于sizeRetention 或 timeRetention。

一.整体框架

prometheus中启动1个goroutine执行db.run()。
在db.run()中执行了1min的loop循环:

  • 检查Head block是否需要compact,若是,则先将head block compact 成 disk block;
  • 然后compact disk block:

    • 首先,生成compact计划,即找出可以compact的blocks;
    • 然后,将找出来的blocks执行compact过程;
    • 最后,删除掉过期的blocks;

image.png

二.compact的整体逻辑代码

代码入口:

  • 1min的循环loop,在loop前,有backoff的时间微调;
// tsdb/db.go
func (db *DB) run() {
    backoff := time.Duration(0)
    for {
        // 时间回退
        select {        
        case <-time.After(backoff):
        }
        select {
        case <-time.After(1 * time.Minute):
            select {
            case db.compactc <- struct{}{}:
            default:
            }
        // 1min执行1次
        case <-db.compactc:    
            if db.autoCompact {
                if err := db.Compact(); err != nil {    //失败的话,指数回退    
                    backoff = exponential(backoff, 1*time.Second, 1*time.Minute)
                } else {
                    backoff = 0
                }
            }
            ......
        }
    }
}

具体compact的逻辑:

// tsdb/db.go
func (db *DB) Compact() (err error) {
    .....
    // 先检查head block是否需要compact
    // 即将head block --> disk block
    for {
        if !db.head.compactable() {
            break
        }
        mint := db.head.MinTime()
        maxt := rangeForTimestamp(mint, db.head.chunkRange)
        head := NewRangeHead(db.head, mint, maxt-1)
        if err := db.compactHead(head); err != nil {
            return err
        }
    }
    // 再compact磁盘block
    return db.compactBlocks()
}

先检查head block是否需要compact
当head block的时间跨度 > chunkRange的1.5倍时,则需要将head block变成disk block:

// tsdb/head.go
func (h *Head) compactable() bool {
    return h.MaxTime()-h.MinTime() > h.chunkRange/2*3
}

三.disk block compact的过程分析

磁盘block的compact过程:

  • 先生成compact plan;
  • 再执行compact;
  • 最后reload删掉源文件;
// tsdb/db.go
func (db *DB) compactBlocks() (err error) {
    // Check for compactions of multiple blocks.
    for {
        // 先生成compact plan
        plan, err := db.compactor.Plan(db.dir)        
        if len(plan) == 0 {    // 没有plan,直接返回
            break
        }    
        // 再执行compact
        uid, err := db.compactor.Compact(db.dir, plan, db.blocks)
        if err != nil {
            return errors.Wrapf(err, "compact %s", plan)
        }
        runtime.GC()
        // 最后reload删掉源文件
        if err := db.reload(); err != nil {
            if err := os.RemoveAll(filepath.Join(db.dir, uid.String())); err != nil {
                return errors.Wrapf(err, "delete compacted block after failed db reload:%s", uid)
            }
            return errors.Wrap(err, "reload blocks")
        }
        runtime.GC()
    }
    return nil
}

1.生成compact plan

选择blocks的优先级如下:

  • 首先,检查是否有Overlap的block,若存在则直接返回;

    • 一般情况下,block之间的timestamp没有overlap,除非是主动写入了<当前timestamp的时序序列;
    Moreover, Prometheus itself does not produce overlapping blocks, it's only possible if you backfill some data into Prometheus.
  • 其次,按timeRange在blocks中选择可以compact的blocks,若找到则返回;
  • 最后,找满足 numTombstoneSeries /numSeriesTotal > 5% 的block,该plan仅输出1个block,它会生成新的block(不含tombstone中的数据);
// tsdb/compact.go
func (c *LeveledCompactor) plan(dms []dirMeta) ([]string, error) {
    sort.Slice(dms, func(i, j int) bool {
        return dms[i].meta.MinTime < dms[j].meta.MinTime
    })
    // 1.先检查是否有overlap的block
    // 若有,直接返回
    res := c.selectOverlappingDirs(dms)
    if len(res) > 0 {
        return res, nil
    }
    // 排除掉最新的block
    dms = dms[:len(dms)-1]
    // 2.然后,在block dir中选择可以压缩的block
    // 若找到,则返回
    for _, dm := range c.selectDirs(dms) {
        res = append(res, dm.dir)
    }
    if len(res) > 0 {
        return res, nil
    }
    // 3. 找block,满足 numTombstone / numSeries > 5%
    // Compact any blocks with big enough time range that have >5% tombstones.
    for i := len(dms) - 1; i >= 0; i-- {
        meta := dms[i].meta
        if meta.MaxTime-meta.MinTime < c.ranges[len(c.ranges)/2] {
            break
        }
        if float64(meta.Stats.NumTombstones)/float64(meta.Stats.NumSeries+1) > 0.05 {
            return []string{dms[i].dir}, nil
        }
    }
    return nil, nil
}

如何在blocks中选择出要compact的block?

  • 将所有的blocks按minTime从小到大排序,在筛选blocks时,先排除最新的blocks,即去掉blocks[size-1];
  • 按range查找block列表,range={6hour, 18hour, 54hour, ....},3的倍数递增;
  • 先按range=6hour找,找到在6hour内的blocks,则返回;否则,按18hour找;

image.png

以range=6hour为例,筛选parts的条件:

  • 假设当前block: {b1, b2, b3, b-latest},将其按6hour进行切割

    • 切完后:[b1, b2], [b3], b-latest
  • 对于[b1, b2]:

    • 若b2.maxTime - b1.minTime = 6hour,则[b1, b2]可以执行压缩;
    • 若b2.maxTime < b3.minTime,则[b1, b2]可以执行压缩;
// tsdb/db.go
// 返回[2, 6, 18, 54, ......],即2,2*3,2*3*3,...
rngs = ExponentialBlockRanges(opts.MinBlockDuration, 10, 3)

// 选择deletableBlocks
func (c *LeveledCompactor) selectDirs(ds []dirMeta) []dirMeta {
    if len(c.ranges) < 2 || len(ds) < 1 {
        return nil
    }
    highTime := ds[len(ds)-1].meta.MinTime
    // range[1:] = {6hour, 18hour, 54hour, ....}
    for _, iv := range c.ranges[1:] {
        parts := splitByRange(ds, iv)    // 按range=iv查找blocks
        if len(parts) == 0 {
            continue
        }
    Outer:    
        for _, p := range parts {
            mint := p[0].meta.MinTime
            maxt := p[len(p)-1].meta.MaxTime
            // Pick the range of blocks if it spans the full range (potentially with gaps)
            // or is before the most recent block.
            // This ensures we don't compact blocks prematurely when another one of the same
            // size still fits in the range.
            if (maxt-mint == iv || maxt <= highTime) && len(p) > 1 {    //满足条件
                return p
            }
        }
    }
    return nil
}

2.执行compact

将上一步选择的plan作为compact的来源,执行compact:

  • 将plan中的blocks数据compact生成新的block;
  • 将plan中的blocks元数据合并生成新的meta.json;

    • 元数据中指明source、parents、minTime、maxTime,同时将compactLevel + 1;
// tsdb/compact.go
// dest = db.dir, dirs = plan, open = db.blocks
func (c *LeveledCompactor) Compact(dest string, dirs []string, open []*Block) (uid ulid.ULID, err error) {
    var (
        blocks []BlockReader
        bs     []*Block
        metas  []*BlockMeta
        uids   []string
    )    
    // 将dir下所有block加载,放入[]blocks
    for _, d := range dirs {
        meta, _, err := readMetaFile(d)    
        
        var b *Block
        // Use already open blocks if we can, to avoid
        // having the index data in memory twice.
        for _, o := range open {
            if meta.ULID == o.Meta().ULID {
                b = o
                break
            }
        }
        if b == nil {            
            b, err = OpenBlock(c.logger, d, c.chunkPool)            
            defer b.Close()
        }
        metas = append(metas, meta)
        blocks = append(blocks, b)
        bs = append(bs, b)
        uids = append(uids, meta.ULID.String())
    }
    
    // 新的uid    
    uid = ulid.MustNew(ulid.Now(), rand.Reader)
    // 新的metadata
    meta := compactBlockMetas(uid, metas...)
    // 合并blocks,将meta信息写入meta.json
    // 合并index,写入index文件
    err = c.write(dest, meta, blocks...)
    var merr tsdb_errors.MultiError
    merr.Add(err)    
    return uid, merr
}

3.删掉源文件:reload

检查retentionTime和retentionSize,删除不满足条件的blocks。

  • 从所有的blocks中选择可以被删除的blocks:

    • 整个block的时间,已完全超过retentionTime;
    • 所有block的size,已超过retentionSize,删除满足retentionSize的最晚时间的那些blocks;
  • 将deleteable blocks删除;
// tsdb/db.go
// reload blocks and trigger head truncation if new blocks appeared.
// Blocks that are obsolete due to replacement or retention will be deleted.
func (db *DB) reload() (err error) {    
    loadable, corrupted, err := openBlocks(db.logger, db.dir, db.blocks, db.chunkPool)    

    // 选择可删除的blocks(已超过retentionTime或retentionSize)
    deletable := db.deletableBlocks(loadable)

    if err := db.deleteBlocks(deletable); err != nil {    // 删除blocks
        return err
    }

    // Garbage collect data in the head if the most recent persisted block
    // covers data of its current time range.
    if len(loadable) == 0 {
        return nil
    }
    maxt := loadable[len(loadable)-1].Meta().MaxTime
    return errors.Wrap(db.head.Truncate(maxt), "head truncate failed")

超过retentionTime的blocks

由于blocks按maxTime从大到小排序,blocks[0]是最近时间的block;
当遍历blocks时,当发现(block0.maxTime - blockA.maxTime) > retentionDuration时,可认为当前blockA以及其后的block,都可以被删掉了。

// tsdb/db.go
func (db *DB) beyondTimeRetention(blocks []*Block) (deletable map[ulid.ULID]*Block) {
    // Time retention is disabled or no blocks to work with.
    if len(db.blocks) == 0 || db.opts.RetentionDuration == 0 {
        return
    }
    deletable = make(map[ulid.ULID]*Block)
    for i, block := range blocks {
        // The difference between the first block and this block is larger than
        // the retention period so any blocks after that are added as deletable.
        if i > 0 && blocks[0].Meta().MaxTime-block.Meta().MaxTime > db.opts.RetentionDuration {
            for _, b := range blocks[i:] {
                deletable[b.meta.ULID] = b
            }
            break
        }
    }
    return deletable
}

超过retentionSize的blocks

总的blockSize = walSize + headChunkSize + block1Size + block2Size + ...
blocks按maxTime从大到小排序,blocks[0]是最近时间的block。
遍历blocks时,sumBlockSize += blockSize, 若发现sumBlockSize > retentionSize,则将该block以及其后的block加入待删除列表:

// tsdb/db.go
func (db *DB) beyondSizeRetention(blocks []*Block) (deletable map[ulid.ULID]*Block) {
    // Size retention is disabled or no blocks to work with.
    if len(db.blocks) == 0 || db.opts.MaxBytes <= 0 {
        return
    }
    deletable = make(map[ulid.ULID]*Block)
    walSize, _ := db.Head().wal.Size()
    headChunksSize := db.Head().chunkDiskMapper.Size()
    // Initializing size counter with WAL size and Head chunks
    // written to disk, as that is part of the retention strategy.
    blocksSize := walSize + headChunksSize
    for i, block := range blocks {
        blocksSize += block.Size()
        if blocksSize > int64(db.opts.MaxBytes) {
            // Add this and all following blocks for deletion.
            for _, b := range blocks[i:] {
                deletable[b.meta.ULID] = b
            }
            break
        }
    }
    return deletable
}

参考:

1.https://ganeshvernekar.com/blog/prometheus-tsdb-compaction-an...


a朋
63 声望39 粉丝