水平垂直居中的实现
- 利用绝对定位,先将元素的左上角通过top:50%和left:50%定位到页面的中心,然后再通过translate来调整元素的中心点到页面的中心。该方法需要考虑浏览器兼容问题。
.parent { position: relative;} .child { position: absolute; left: 50%; top: 50%; transform: translate(-50%,-50%);}
- 利用绝对定位,设置四个方向的值都为0,并将margin设置为auto,由于宽高固定,因此对应方向实现平分,可以实现水平和垂直方向上的居中。该方法适用于盒子有宽高的情况:
.parent {
position: relative;
}
.child {
position: absolute;
top: 0;
bottom: 0;
left: 0;
right: 0;
margin: auto;
}
- 利用绝对定位,先将元素的左上角通过top:50%和left:50%定位到页面的中心,然后再通过margin负值来调整元素的中心点到页面的中心。该方法适用于盒子宽高已知的情况
.parent {
position: relative;
}
.child {
position: absolute;
top: 50%;
left: 50%;
margin-top: -50px; /* 自身 height 的一半 */
margin-left: -50px; /* 自身 width 的一半 */
}
- 使用flex布局,通过align-items:center和justify-content:center设置容器的垂直和水平方向上为居中对齐,然后它的子元素也可以实现垂直和水平的居中。该方法要考虑兼容的问题,该方法在移动端用的较多:
.parent {
display: flex;
justify-content:center;
align-items:center;
}
寄生组合继承
题目描述:实现一个你认为不错的 js 继承方式
实现代码如下:
function Parent(name) {
this.name = name;
this.say = () => {
console.log(111);
};
}
Parent.prototype.play = () => {
console.log(222);
};
function Children(name) {
Parent.call(this);
this.name = name;
}
Children.prototype = Object.create(Parent.prototype);
Children.prototype.constructor = Children;
// let child = new Children("111");
// // console.log(child.name);
// // child.say();
// // child.play();
代码输出结果
Promise.resolve('1')
.then(res => {
console.log(res)
})
.finally(() => {
console.log('finally')
})
Promise.resolve('2')
.finally(() => {
console.log('finally2')
return '我是finally2返回的值'
})
.then(res => {
console.log('finally2后面的then函数', res)
})
输出结果如下:
1
finally2
finally
finally2后面的then函数 2
.finally()
一般用的很少,只要记住以下几点就可以了:
.finally()
方法不管Promise对象最后的状态如何都会执行.finally()
方法的回调函数不接受任何的参数,也就是说你在.finally()
函数中是无法知道Promise最终的状态是resolved
还是rejected
的- 它最终返回的默认会是一个上一次的Promise对象值,不过如果抛出的是一个异常则返回异常的Promise对象。
- finally本质上是then方法的特例
.finally()
的错误捕获:
Promise.resolve('1')
.finally(() => {
console.log('finally1')
throw new Error('我是finally中抛出的异常')
})
.then(res => {
console.log('finally后面的then函数', res)
})
.catch(err => {
console.log('捕获错误', err)
})
输出结果为:
'finally1'
'捕获错误' Error: 我是finally中抛出的异常
进程与线程的概念
从本质上说,进程和线程都是 CPU 工作时间片的一个描述:
- 进程描述了 CPU 在运行指令及加载和保存上下文所需的时间,放在应用上来说就代表了一个程序。
- 线程是进程中的更小单位,描述了执行一段指令所需的时间。
进程是资源分配的最小单位,线程是CPU调度的最小单位。
一个进程就是一个程序的运行实例。详细解释就是,启动一个程序的时候,操作系统会为该程序创建一块内存,用来存放代码、运行中的数据和一个执行任务的主线程,我们把这样的一个运行环境叫进程。进程是运行在虚拟内存上的,虚拟内存是用来解决用户对硬件资源的无限需求和有限的硬件资源之间的矛盾的。从操作系统角度来看,虚拟内存即交换文件;从处理器角度看,虚拟内存即虚拟地址空间。
如果程序很多时,内存可能会不够,操作系统为每个进程提供一套独立的虚拟地址空间,从而使得同一块物理内存在不同的进程中可以对应到不同或相同的虚拟地址,变相的增加了程序可以使用的内存。
进程和线程之间的关系有以下四个特点:
(1)进程中的任意一线程执行出错,都会导致整个进程的崩溃。
(2)线程之间共享进程中的数据。
(3)当一个进程关闭之后,操作系统会回收进程所占用的内存, 当一个进程退出时,操作系统会回收该进程所申请的所有资源;即使其中任意线程因为操作不当导致内存泄漏,当进程退出时,这些内存也会被正确回收。
(4)进程之间的内容相互隔离。 进程隔离就是为了使操作系统中的进程互不干扰,每一个进程只能访问自己占有的数据,也就避免出现进程 A 写入数据到进程 B 的情况。正是因为进程之间的数据是严格隔离的,所以一个进程如果崩溃了,或者挂起了,是不会影响到其他进程的。如果进程之间需要进行数据的通信,这时候,就需要使用用于进程间通信的机制了。
Chrome浏览器的架构图: 从图中可以看出,最新的 Chrome 浏览器包括:
- 1 个浏览器主进程
- 1 个 GPU 进程
- 1 个网络进程
- 多个渲染进程
- 多个插件进程
这些进程的功能:
- 浏览器进程:主要负责界面显示、用户交互、子进程管理,同时提供存储等功能。
- 渲染进程:核心任务是将 HTML、CSS 和 JavaScript 转换为用户可以与之交互的网页,排版引擎 Blink 和 JavaScript 引擎 V8 都是运行在该进程中,默认情况下,Chrome 会为每个 Tab 标签创建一个渲染进程。出于安全考虑,渲染进程都是运行在沙箱模式下。
- GPU 进程:其实, GPU 的使用初衷是为了实现 3D CSS 的效果,只是随后网页、Chrome 的 UI 界面都选择采用 GPU 来绘制,这使得 GPU 成为浏览器普遍的需求。最后,Chrome 在其多进程架构上也引入了 GPU 进程。
- 网络进程:主要负责页面的网络资源加载,之前是作为一个模块运行在浏览器进程里面的,直至最近才独立出来,成为一个单独的进程。
- 插件进程:主要是负责插件的运行,因插件易崩溃,所以需要通过插件进程来隔离,以保证插件进程崩溃不会对浏览器和页面造成影响。
所以,打开一个网页,最少需要四个进程:1 个网络进程、1 个浏览器进程、1 个 GPU 进程以及 1 个渲染进程。如果打开的页面有运行插件的话,还需要再加上 1 个插件进程。
虽然多进程模型提升了浏览器的稳定性、流畅性和安全性,但同样不可避免地带来了一些问题:
- 更高的资源占用:因为每个进程都会包含公共基础结构的副本(如 JavaScript 运行环境),这就意味着浏览器会消耗更多的内存资源。
- 更复杂的体系架构:浏览器各模块之间耦合性高、扩展性差等问题,会导致现在的架构已经很难适应新的需求了。
事件是什么?事件模型?
事件是用户操作网页时发生的交互动作,比如 click/move, 事件除了用户触发的动作外,还可以是文档加载,窗口滚动和大小调整。事件被封装成一个 event 对象,包含了该事件发生时的所有相关信息( event 的属性)以及可以对事件进行的操作( event 的方法)。
事件是用户操作网页时发生的交互动作或者网页本身的一些操作,现代浏览器一共有三种事件模型:
- DOM0 级事件模型,这种模型不会传播,所以没有事件流的概念,但是现在有的浏览器支持以冒泡的方式实现,它可以在网页中直接定义监听函数,也可以通过 js 属性来指定监听函数。所有浏览器都兼容这种方式。直接在dom对象上注册事件名称,就是DOM0写法。
- IE 事件模型,在该事件模型中,一次事件共有两个过程,事件处理阶段和事件冒泡阶段。事件处理阶段会首先执行目标元素绑定的监听事件。然后是事件冒泡阶段,冒泡指的是事件从目标元素冒泡到 document,依次检查经过的节点是否绑定了事件监听函数,如果有则执行。这种模型通过attachEvent 来添加监听函数,可以添加多个监听函数,会按顺序依次执行。
- DOM2 级事件模型,在该事件模型中,一次事件共有三个过程,第一个过程是事件捕获阶段。捕获指的是事件从 document 一直向下传播到目标元素,依次检查经过的节点是否绑定了事件监听函数,如果有则执行。后面两个阶段和 IE 事件模型的两个阶段相同。这种事件模型,事件绑定的函数是addEventListener,其中第三个参数可以指定事件是否在捕获阶段执行。
手写题:数组扁平化
function flatten(arr) {
let result = [];
for (let i = 0; i < arr.length; i++) {
if (Array.isArray(arr[i])) {
result = result.concat(flatten(arr[i]));
} else {
result = result.concat(arr[i]);
}
}
return result;
}
const a = [1, [2, [3, 4]]];
console.log(flatten(a));
参考 前端进阶面试题详细解答
事件是如何实现的?
基于发布订阅模式,就是在浏览器加载的时候会读取事件相关的代码,但是只有实际等到具体的事件触发的时候才会执行。
比如点击按钮,这是个事件(Event),而负责处理事件的代码段通常被称为事件处理程序(Event Handler),也就是「启动对话框的显示」这个动作。
在 Web 端,我们常见的就是 DOM 事件:
- DOM0 级事件,直接在 html 元素上绑定 on-event,比如 onclick,取消的话,dom.onclick = null,同一个事件只能有一个处理程序,后面的会覆盖前面的。
- DOM2 级事件,通过 addEventListener 注册事件,通过 removeEventListener 来删除事件,一个事件可以有多个事件处理程序,按顺序执行,捕获事件和冒泡事件
- DOM3级事件,增加了事件类型,比如 UI 事件,焦点事件,鼠标事件
代码输出结果
var length = 10;
function fn() {
console.log(this.length);
}
var obj = {
length: 5,
method: function(fn) {
fn();
arguments[0]();
}
};
obj.method(fn, 1);
输出结果: 10 2
解析:
- 第一次执行fn(),this指向window对象,输出10。
- 第二次执行arguments[0],相当于arguments调用方法,this指向arguments,而这里传了两个参数,故输出arguments长度为2。
localStorage sessionStorage cookies 有什么区别?
localStorage:以键值对的方式存储 储存时间没有限制 永久生效 除非自己删除记录
sessionStorage:当页面关闭后被清理与其他相比不能同源窗口共享 是会话级别的存储方式
cookies 数据不能超过4k 同时因为每次http请求都会携带cookie 所有cookie只适合保存很小的数据 如会话标识
代码输出结果
var a = 10;
var obt = {
a: 20,
fn: function(){
var a = 30;
console.log(this.a)
}
}
obt.fn(); // 20
obt.fn.call(); // 10
(obt.fn)(); // 20
输出结果: 20 10 20
解析:
- obt.fn(),fn是由obt调用的,所以其this指向obt对象,会打印出20;
- obt.fn.call(),这里call的参数啥都没写,就表示null,我们知道如果call的参数为undefined或null,那么this就会指向全局对象this,所以会打印出 10;
- (obt.fn)(), 这里给表达式加了括号,而括号的作用是改变表达式的运算顺序,而在这里加与不加括号并无影响;相当于 obt.fn(),所以会打印出 20;
事件委托的使用场景
场景:给页面的所有的a标签添加click事件,代码如下:
document.addEventListener("click", function(e) {
if (e.target.nodeName == "A")
console.log("a");
}, false);
但是这些a标签可能包含一些像span、img等元素,如果点击到了这些a标签中的元素,就不会触发click事件,因为事件绑定上在a标签元素上,而触发这些内部的元素时,e.target指向的是触发click事件的元素(span、img等其他元素)。
这种情况下就可以使用事件委托来处理,将事件绑定在a标签的内部元素上,当点击它的时候,就会逐级向上查找,知道找到a标签为止,代码如下:
document.addEventListener("click", function(e) {
var node = e.target;
while (node.parentNode.nodeName != "BODY") {
if (node.nodeName == "A") {
console.log("a");
break;
}
node = node.parentNode;
}
}, false);
如何提⾼webpack的构建速度?
- 多⼊⼝情况下,使⽤ CommonsChunkPlugin 来提取公共代码
- 通过 externals 配置来提取常⽤库
- 利⽤ DllPlugin 和 DllReferencePlugin 预编译资源模块 通过 DllPlugin 来对那些我们引⽤但是绝对不会修改的npm包来进⾏预编译,再通过 DllReferencePlugin 将预编译的模块加载进来。
- 使⽤ Happypack 实现多线程加速编译
- 使⽤ webpack-uglify-parallel 来提升 uglifyPlugin 的压缩速度。 原理上 webpack-uglify-parallel 采⽤了多核并⾏压缩来提升压缩速度
- 使⽤ Tree-shaking 和 Scope Hoisting 来剔除多余代码
PWA使用过吗?serviceWorker的使用原理是啥?
渐进式网络应用(PWA)
是谷歌在2015年底提出的概念。基本上算是web应用程序,但在外观和感觉上与原生app
类似。支持PWA
的网站可以提供脱机工作、推送通知和设备硬件访问等功能。
Service Worker
是浏览器在后台独立于网页运行的脚本,它打开了通向不需要网页或用户交互的功能的大门。 现在,它们已包括如推送通知和后台同步等功能。 将来,Service Worker
将会支持如定期同步或地理围栏等其他功能。 本教程讨论的核心功能是拦截和处理网络请求,包括通过程序来管理缓存中的响应。
冒泡排序--时间复杂度 n^2
题目描述:实现一个冒泡排序
实现代码如下:
function bubbleSort(arr) {
// 缓存数组长度
const len = arr.length;
// 外层循环用于控制从头到尾的比较+交换到底有多少轮
for (let i = 0; i < len; i++) {
// 内层循环用于完成每一轮遍历过程中的重复比较+交换
for (let j = 0; j < len - 1; j++) {
// 若相邻元素前面的数比后面的大
if (arr[j] > arr[j + 1]) {
// 交换两者
[arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
}
}
}
// 返回数组
return arr;
}
// console.log(bubbleSort([3, 6, 2, 4, 1]));
Promise 以及相关方法的实现
题目描述:手写 Promise 以及 Promise.all Promise.race 的实现
实现代码如下:
class Mypromise {
constructor(fn) {
// 表示状态
this.state = "pending";
// 表示then注册的成功函数
this.successFun = [];
// 表示then注册的失败函数
this.failFun = [];
let resolve = (val) => {
// 保持状态改变不可变(resolve和reject只准触发一种)
if (this.state !== "pending") return;
// 成功触发时机 改变状态 同时执行在then注册的回调事件
this.state = "success";
// 为了保证then事件先注册(主要是考虑在promise里面写同步代码) promise规范 这里为模拟异步
setTimeout(() => {
// 执行当前事件里面所有的注册函数
this.successFun.forEach((item) => item.call(this, val));
});
};
let reject = (err) => {
if (this.state !== "pending") return;
// 失败触发时机 改变状态 同时执行在then注册的回调事件
this.state = "fail";
// 为了保证then事件先注册(主要是考虑在promise里面写同步代码) promise规范 这里模拟异步
setTimeout(() => {
this.failFun.forEach((item) => item.call(this, err));
});
};
// 调用函数
try {
fn(resolve, reject);
} catch (error) {
reject(error);
}
}
// 实例方法 then
then(resolveCallback, rejectCallback) {
// 判断回调是否是函数
resolveCallback =
typeof resolveCallback !== "function" ? (v) => v : resolveCallback;
rejectCallback =
typeof rejectCallback !== "function"
? (err) => {
throw err;
}
: rejectCallback;
// 为了保持链式调用 继续返回promise
return new Mypromise((resolve, reject) => {
// 将回调注册到successFun事件集合里面去
this.successFun.push((val) => {
try {
// 执行回调函数
let x = resolveCallback(val);
//(最难的一点)
// 如果回调函数结果是普通值 那么就resolve出去给下一个then链式调用 如果是一个promise对象(代表又是一个异步) 那么调用x的then方法 将resolve和reject传进去 等到x内部的异步 执行完毕的时候(状态完成)就会自动执行传入的resolve 这样就控制了链式调用的顺序
x instanceof Mypromise ? x.then(resolve, reject) : resolve(x);
} catch (error) {
reject(error);
}
});
this.failFun.push((val) => {
try {
// 执行回调函数
let x = rejectCallback(val);
x instanceof Mypromise ? x.then(resolve, reject) : reject(x);
} catch (error) {
reject(error);
}
});
});
}
//静态方法
static all(promiseArr) {
let result = [];
//声明一个计数器 每一个promise返回就加一
let count = 0;
return new Mypromise((resolve, reject) => {
for (let i = 0; i < promiseArr.length; i++) {
//这里用 Promise.resolve包装一下 防止不是Promise类型传进来
Promise.resolve(promiseArr[i]).then(
(res) => {
//这里不能直接push数组 因为要控制顺序一一对应(感谢评论区指正)
result[i] = res;
count++;
//只有全部的promise执行成功之后才resolve出去
if (count === promiseArr.length) {
resolve(result);
}
},
(err) => {
reject(err);
}
);
}
});
}
//静态方法
static race(promiseArr) {
return new Mypromise((resolve, reject) => {
for (let i = 0; i < promiseArr.length; i++) {
Promise.resolve(promiseArr[i]).then(
(res) => {
//promise数组只要有任何一个promise 状态变更 就可以返回
resolve(res);
},
(err) => {
reject(err);
}
);
}
});
}
}
// 使用
// let promise1 = new Mypromise((resolve, reject) => {
// setTimeout(() => {
// resolve(123);
// }, 2000);
// });
// let promise2 = new Mypromise((resolve, reject) => {
// setTimeout(() => {
// resolve(1234);
// }, 1000);
// });
// Mypromise.all([promise1,promise2]).then(res=>{
// console.log(res);
// })
// Mypromise.race([promise1, promise2]).then(res => {
// console.log(res);
// });
// promise1
// .then(
// res => {
// console.log(res); //过两秒输出123
// return new Mypromise((resolve, reject) => {
// setTimeout(() => {
// resolve("success");
// }, 1000);
// });
// },
// err => {
// console.log(err);
// }
// )
// .then(
// res => {
// console.log(res); //再过一秒输出success
// },
// err => {
// console.log(err);
// }
// );
扩展思考:如何取消 promise
Promise.race()方法可以用来竞争 Promise
可以借助这个特性 自己包装一个 空的 Promise 与要发起的 Promise 来实现
function wrap(pro) {
let obj = {};
// 构造一个新的promise用来竞争
let p1 = new Promise((resolve, reject) => {
obj.resolve = resolve;
obj.reject = reject;
});
obj.promise = Promise.race([p1, pro]);
return obj;
}
let testPro = new Promise((resolve, reject) => {
setTimeout(() => {
resolve(123);
}, 1000);
});
let wrapPro = wrap(testPro);
wrapPro.promise.then((res) => {
console.log(res);
});
wrapPro.resolve("被拦截了");
为什么 0.1 + 0.2 != 0.3,请详述理由
因为 JS 采用 IEEE 754 双精度版本(64位),并且只要采用 IEEE 754 的语言都有该问题。
我们都知道计算机表示十进制是采用二进制表示的,所以 0.1
在二进制表示为
// (0011) 表示循环
0.1 = 2^-4 * 1.10011(0011)
那么如何得到这个二进制的呢,我们可以来演算下
小数算二进制和整数不同。乘法计算时,只计算小数位,整数位用作每一位的二进制,并且得到的第一位为最高位。所以我们得出 0.1 = 2^-4 * 1.10011(0011)
,那么 0.2
的演算也基本如上所示,只需要去掉第一步乘法,所以得出 0.2 = 2^-3 * 1.10011(0011)
。
回来继续说 IEEE 754 双精度。六十四位中符号位占一位,整数位占十一位,其余五十二位都为小数位。因为 0.1
和 0.2
都是无限循环的二进制了,所以在小数位末尾处需要判断是否进位(就和十进制的四舍五入一样)。
所以 2^-4 * 1.10011...001
进位后就变成了 2^-4 * 1.10011(0011 * 12次)010
。那么把这两个二进制加起来会得出 2^-2 * 1.0011(0011 * 11次)0100
, 这个值算成十进制就是 0.30000000000000004
下面说一下原生解决办法,如下代码所示
parseFloat((0.1 + 0.2).toFixed(10))
首屏和白屏时间如何计算
首屏时间的计算,可以由 Native WebView 提供的类似 onload 的方法实现,在 ios 下对应的是 webViewDidFinishLoad,在 android 下对应的是onPageFinished事件。
白屏的定义有多种。可以认为“没有任何内容”是白屏,可以认为“网络或服务异常”是白屏,可以认为“数据加载中”是白屏,可以认为“图片加载不出来”是白屏。场景不同,白屏的计算方式就不相同。
方法1:当页面的元素数小于x时,则认为页面白屏。比如“没有任何内容”,可以获取页面的DOM节点数,判断DOM节点数少于某个阈值X,则认为白屏。 方法2:当页面出现业务定义的错误码时,则认为是白屏。比如“网络或服务异常”。 方法3:当页面出现业务定义的特征值时,则认为是白屏。比如“数据加载中”。
继承
原型链继承
function Animal() {
this.colors = ['black', 'white']
}
Animal.prototype.getColor = function() {
return this.colors
}
function Dog() {}
Dog.prototype = new Animal()
let dog1 = new Dog()
dog1.colors.push('brown')
let dog2 = new Dog()
console.log(dog2.colors) // ['black', 'white', 'brown']
原型链继承存在的问题:
- 问题1:原型中包含的引用类型属性将被所有实例共享;
- 问题2:子类在实例化的时候不能给父类构造函数传参;
借用构造函数实现继承
function Animal(name) {
this.name = name
this.getName = function() {
return this.name
}
}
function Dog(name) {
Animal.call(this, name)
}
Dog.prototype = new Animal()
借用构造函数实现继承解决了原型链继承的 2 个问题:引用类型共享问题以及传参问题。但是由于方法必须定义在构造函数中,所以会导致每次创建子类实例都会创建一遍方法。
组合继承
组合继承结合了原型链和盗用构造函数,将两者的优点集中了起来。基本的思路是使用原型链继承原型上的属性和方法,而通过盗用构造函数继承实例属性。这样既可以把方法定义在原型上以实现重用,又可以让每个实例都有自己的属性。
function Animal(name) {
this.name = name
this.colors = ['black', 'white']
}
Animal.prototype.getName = function() {
return this.name
}
function Dog(name, age) {
Animal.call(this, name)
this.age = age
}
Dog.prototype = new Animal()
Dog.prototype.constructor = Dog
let dog1 = new Dog('奶昔', 2)
dog1.colors.push('brown')
let dog2 = new Dog('哈赤', 1)
console.log(dog2)
// { name: "哈赤", colors: ["black", "white"], age: 1 }
寄生式组合继承
组合继承已经相对完善了,但还是存在问题,它的问题就是调用了 2 次父类构造函数,第一次是在 new Animal(),第二次是在 Animal.call() 这里。
所以解决方案就是不直接调用父类构造函数给子类原型赋值,而是通过创建空函数 F 获取父类原型的副本。
寄生式组合继承写法上和组合继承基本类似,区别是如下这里:
- Dog.prototype = new Animal()
- Dog.prototype.constructor = Dog
+ function F() {}
+ F.prototype = Animal.prototype
+ let f = new F()
+ f.constructor = Dog
+ Dog.prototype = f
稍微封装下上面添加的代码后:
function object(o) {
function F() {}
F.prototype = o
return new F()
}
function inheritPrototype(child, parent) {
let prototype = object(parent.prototype)
prototype.constructor = child
child.prototype = prototype
}
inheritPrototype(Dog, Animal)
如果你嫌弃上面的代码太多了,还可以基于组合继承的代码改成最简单的寄生式组合继承:
- Dog.prototype = new Animal()
- Dog.prototype.constructor = Dog
+ Dog.prototype = Object.create(Animal.prototype)
+ Dog.prototype.constructor = Dog
class 实现继承
class Animal {
constructor(name) {
this.name = name
}
getName() {
return this.name
}
}
class Dog extends Animal {
constructor(name, age) {
super(name)
this.age = age
}
}
原函数形参不定长(此时 fn.length
为0)
function curry(fn) {
// 保存参数,除去第一个函数参数
let args = [].slice.call(arguments, 1);
// 返回一个新函数
let curried = function () {
// 新函数调用时会继续传参
let allArgs = [...args, ...arguments];
return curry(fn, ...allArgs);
};
// 利用toString隐式转换的特性,当最后执行函数时,会隐式转换
curried.toString = function () {
return fn(...args);
};
return curried;
}
// 测试
function add(...args) {
return args.reduce((pre, cur) => pre + cur, 0);
}
console.log(add(1, 2, 3, 4));
let addCurry = curry(add);
console.log(addCurry(1)(2)(3) == 6); // true
console.log(addCurry(1, 2, 3)(4) == 10); // true
console.log(addCurry(2, 6)(1).toString()); // 9
console.log(addCurry(2, 6)(1, 8)); // 打印 curried 函数
深浅拷贝
浅拷贝:只考虑对象类型。
function shallowCopy(obj) {
if (typeof obj !== 'object') return
let newObj = obj instanceof Array ? [] : {}
for (let key in obj) {
if (obj.hasOwnProperty(key)) {
newObj[key] = obj[key]
}
}
return newObj
}
简单版深拷贝:只考虑普通对象属性,不考虑内置对象和函数。
function deepClone(obj) {
if (typeof obj !== 'object') return;
var newObj = obj instanceof Array ? [] : {};
for (var key in obj) {
if (obj.hasOwnProperty(key)) {
newObj[key] = typeof obj[key] === 'object' ? deepClone(obj[key]) : obj[key];
}
}
return newObj;
}
复杂版深克隆:基于简单版的基础上,还考虑了内置对象比如 Date、RegExp 等对象和函数以及解决了循环引用的问题。
const isObject = (target) => (typeof target === "object" || typeof target === "function") && target !== null;
function deepClone(target, map = new WeakMap()) {
if (map.get(target)) {
return target;
}
// 获取当前值的构造函数:获取它的类型
let constructor = target.constructor;
// 检测当前对象target是否与正则、日期格式对象匹配
if (/^(RegExp|Date)$/i.test(constructor.name)) {
// 创建一个新的特殊对象(正则类/日期类)的实例
return new constructor(target);
}
if (isObject(target)) {
map.set(target, true); // 为循环引用的对象做标记
const cloneTarget = Array.isArray(target) ? [] : {};
for (let prop in target) {
if (target.hasOwnProperty(prop)) {
cloneTarget[prop] = deepClone(target[prop], map);
}
}
return cloneTarget;
} else {
return target;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。