头图

image.png

基于 libbpf 的 TCP 连接延迟监视工具 tcpconnlat 分析 - eBPF基础知识 Part5

《eBPF基础知识》 系列简介:

《eBPF基础知识》系列目标是整理一下 BPF 相关的基础知识。主要聚焦程序与内核互动接口部分。文章使用了 libbpf,但如果你不直接使用 libbpf,看本系列还是有一定意义的,因为它聚焦于程序与内核互动接口部分,而非 libbpf 封装本身。而所有 bpf 开发框架,都要以相似的方式跟内核互动。甚至框架本身就是基于 libbpf。哪怕是 golang/rust/python/BCC/bpftrace。

  1. 《ELF 格式简述 - eBPF基础知识 Part1》
  2. 《BPF 系统接口 与 libbpf 示例分析 - eBPF基础知识 Part2》
  3. 《经典 libbpf 范例: bootstrap 分析 - eBPF基础知识 Part3》
  4. 经典 libbpf 范例: uprobe 分析 - eBPF基础知识 Part4

国际习惯:尽量多图少文字。以下假设读者已经对 BPF 有一定的了解,或者阅读过之前的 《eBPF基础知识》系列文章。

很少人知道,eBPF 的应用鼻祖 BCC 除了提供很多基于 python/bpftrace 的工具集之外,最近因为 libbpf 1.0 大大增强了:易用性、性能、执行文件的可移植性 BPF CO-RE (Compile Once – Run Everywhere) 的原因,开始有很多直接用 libbpf 1.0 写的 c 的 工具了。其中一个就是这篇文章要讲的 tcpconnlat

动机:为何我要研究 libbpf 版本的 tcpconnlat

开始分析前,我想说几句废话:为何我要研究 libbpf 版本的 tcpconnlat?

  1. 了解这个经典又实用的 BPF 工具,如何与内核互动实现功能的。

    内核的 BPF 接口(syscall)由于历史和兼容性原因,设计得实在复杂和不直观。syscall 设计者是想减少 syscall 数量,一个 syscall 实现多功能。但同时也增加了使用的复杂度。这里想了解:

    • 需要用到哪些内核对象
    • 内核对象之间如何 link 起来,组成数据/事件流
  2. 学习如何使用 libbpf。这是次要目标。

    • libbpf 如何帮助简化开发者与内核对话的难度

tcpconnlat 示例程序功能

tcpconnlat 程序通过:

  • 内核态 bpf 程序监听用户的 内核的 tcp_v4_connecttcp_rcv_state_process 函数,去记录和分析 socket 连接建立的用时情况。发送事件到 bpf_perf_event_output。说明一下这两个函数:

    • tcp_v4_connect - 内核尝试建立 socket 时调用

      /* This will initiate an outgoing connection. */
      int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
      {...}
  • tcp_rcv_state_process - 内核 socket 状态变化时调用

    /*
     *    This function implements the receiving procedure of RFC 793 for
     *    all states except ESTABLISHED and TIME_WAIT.
     *    It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
     *    address independent.
     */
    int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
    {...}
  • 用户态程序负责加载(load)和 attach 内核态 BPF 程序。然后监听 bpf_perf_event_output 事件,打印输出。
$ sudo ./tcpconnlat
PID    COMM         IP SADDR            DADDR            DPORT LAT(ms)
4218   code         4  192.168.1.14     192.168.1.17     8118  0.62
3930   Chrome_Child 4  192.168.1.14     192.168.1.17     8118  0.61
...

程序说明

image.png

uprobe 与内核互动概述

如上图排版有问题,请点这里用 Draw.io 打开。部分带互动链接和 hover tips

图中是我跟踪的结果。用 Draw.io 打开后,鼠标放到区域上,会 hover 出 stack(调用堆栈)。

图中的说明已经比较详细。其中包括重要的数据结构和步骤。

1~5. 用户态 libbpf 数据加载与内存数据结构准备

  1. .rodata mmap 内存页准备
  2. vmlinux BTF 加载,用于 BPF CO-RE
  3. 👇

为什么不再写了?因为实在不必要写,图中已经有,一个快速找到序号在图中的位置的小 tips 是,在 draw.io 中 CTRL+f 查找序号:

image.png

分析环境说明

$ uname -a
Linux T30 5.15.0-67-generic #74-Ubuntu SMP Wed Feb 22 14:14:39 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

$ cat /etc/os-release 
PRETTY_NAME="Ubuntu 22.04.2 LTS"
VERSION="22.04.2 LTS (Jammy Jellyfish)"

内核态 BPF 字节码程序

<mark>我一直努力避免在文章直接上代码。原因是,我自己的体验是,在文章中读代码太难了…… </mark>不过有时还是要贴。目标不是让读者完全一次看懂代码,而是对主要逻辑和命名符号有个感性的了解。我尽量精简一下吧。不要被这纸老虎吓跑。只要配合图解。

先看 BPF 内核字节码程序部分:

tcpconnlat.bpf.c

const volatile __u64 targ_min_us = 0;
const volatile pid_t targ_tgid = 0;

struct piddata {
    char comm[TASK_COMM_LEN];
    u64 ts;
    u32 tgid;
};

struct {
    __uint(type, BPF_MAP_TYPE_HASH);
    __uint(max_entries, 4096);
    __type(key, struct sock *);
    __type(value, struct piddata);
} start SEC(".maps");

struct {
    __uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);
    __uint(key_size, sizeof(u32));
    __uint(value_size, sizeof(u32));
} events SEC(".maps");

static int trace_connect(struct sock *sk)
{
    u32 tgid = bpf_get_current_pid_tgid() >> 32;
    struct piddata piddata = {};

    if (targ_tgid && targ_tgid != tgid)
        return 0;

    bpf_get_current_comm(&piddata.comm, sizeof(piddata.comm));
    piddata.ts = bpf_ktime_get_ns();
    piddata.tgid = tgid;
    bpf_map_update_elem(&start, &sk, &piddata, 0);
    return 0;
}

static int handle_tcp_rcv_state_process(void *ctx, struct sock *sk)
{
    struct piddata *piddatap;
    struct event event = {};
    s64 delta;
    u64 ts;

    if (BPF_CORE_READ(sk, __sk_common.skc_state) != TCP_SYN_SENT)
        return 0;

    piddatap = bpf_map_lookup_elem(&start, &sk);
    if (!piddatap)
        return 0;

    ts = bpf_ktime_get_ns();
    delta = (s64)(ts - piddatap->ts);
    if (delta < 0)
        goto cleanup;

    event.delta_us = delta / 1000U;
    if (targ_min_us && event.delta_us < targ_min_us)
        goto cleanup;
    __builtin_memcpy(&event.comm, piddatap->comm,
            sizeof(event.comm));
    event.ts_us = ts / 1000;
    event.tgid = piddatap->tgid;
    event.lport = BPF_CORE_READ(sk, __sk_common.skc_num);
    event.dport = BPF_CORE_READ(sk, __sk_common.skc_dport);
    event.af = BPF_CORE_READ(sk, __sk_common.skc_family);
    if (event.af == AF_INET) {
        event.saddr_v4 = BPF_CORE_READ(sk, __sk_common.skc_rcv_saddr);
        event.daddr_v4 = BPF_CORE_READ(sk, __sk_common.skc_daddr);
    } else {
        BPF_CORE_READ_INTO(&event.saddr_v6, sk,
                __sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);
        BPF_CORE_READ_INTO(&event.daddr_v6, sk,
                __sk_common.skc_v6_daddr.in6_u.u6_addr32);
    }
    bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU,
            &event, sizeof(event));

cleanup:
    bpf_map_delete_elem(&start, &sk);
    return 0;
}

SEC("fentry/tcp_v4_connect")
int BPF_PROG(fentry_tcp_v4_connect, struct sock *sk)
{
    return trace_connect(sk);
}

SEC("fentry/tcp_rcv_state_process")
int BPF_PROG(fentry_tcp_rcv_state_process, struct sock *sk)
{
    return handle_tcp_rcv_state_process(ctx, sk);
}

用户态 bpf 程序

tcpconnlat.c

#define PERF_BUFFER_PAGES    16
#define PERF_POLL_TIMEOUT_MS    100

static volatile sig_atomic_t exiting = 0;

static struct env {
    __u64 min_us;
    pid_t pid;
    bool timestamp;
    bool lport;
    bool verbose;
} env;

const char *argp_program_version = "tcpconnlat 0.1";
const char *argp_program_bug_address =
    "https://github.com/iovisor/bcc/tree/master/libbpf-tools";
const char argp_program_doc[] =
"\nTrace TCP connects and show connection latency.\n"
"\n"
"USAGE: tcpconnlat [--help] [-t] [-p PID] [-L]\n"
"\n"
"EXAMPLES:\n"
"    tcpconnlat              # summarize on-CPU time as a histogram\n"
"    tcpconnlat 1            # trace connection latency slower than 1 ms\n"
"    tcpconnlat 0.1          # trace connection latency slower than 100 us\n"
"    tcpconnlat -t           # 1s summaries, milliseconds, and timestamps\n"
"    tcpconnlat -p 185       # trace PID 185 only\n"
"    tcpconnlat -L           # include LPORT while printing outputs\n";

static const struct argp_option opts[] = {
    { "timestamp", 't', NULL, 0, "Include timestamp on output" },
    { "pid", 'p', "PID", 0, "Trace this PID only" },
    { "lport", 'L', NULL, 0, "Include LPORT on output" },
    { "verbose", 'v', NULL, 0, "Verbose debug output" },
    { NULL, 'h', NULL, OPTION_HIDDEN, "Show the full help" },
    {},
};

static error_t parse_arg(int key, char *arg, struct argp_state *state)
{
...
}

static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args)
{
...
}

static void sig_int(int signo)
{
    exiting = 1;
}

void handle_event(void *ctx, int cpu, void *data, __u32 data_sz)
{
    const struct event *e = data;
    char src[INET6_ADDRSTRLEN];
    char dst[INET6_ADDRSTRLEN];
    union {
        struct in_addr  x4;
        struct in6_addr x6;
    } s, d;
    static __u64 start_ts;

    if (env.timestamp) {
        if (start_ts == 0)
            start_ts = e->ts_us;
        printf("%-9.3f ", (e->ts_us - start_ts) / 1000000.0);
    }
    if (e->af == AF_INET) {
        s.x4.s_addr = e->saddr_v4;
        d.x4.s_addr = e->daddr_v4;
    } else if (e->af == AF_INET6) {
        memcpy(&s.x6.s6_addr, e->saddr_v6, sizeof(s.x6.s6_addr));
        memcpy(&d.x6.s6_addr, e->daddr_v6, sizeof(d.x6.s6_addr));
    } else {
        fprintf(stderr, "broken event: event->af=%d", e->af);
        return;
    }

    if (env.lport) {
        printf("%-6d %-12.12s %-2d %-16s %-6d %-16s %-5d %.2f\n", e->tgid, e->comm,
            e->af == AF_INET ? 4 : 6, inet_ntop(e->af, &s, src, sizeof(src)), e->lport,
            inet_ntop(e->af, &d, dst, sizeof(dst)), ntohs(e->dport),
            e->delta_us / 1000.0);
    } else {
        printf("%-6d %-12.12s %-2d %-16s %-16s %-5d %.2f\n", e->tgid, e->comm,
            e->af == AF_INET ? 4 : 6, inet_ntop(e->af, &s, src, sizeof(src)),
            inet_ntop(e->af, &d, dst, sizeof(dst)), ntohs(e->dport),
            e->delta_us / 1000.0);
    }
}

void handle_lost_events(void *ctx, int cpu, __u64 lost_cnt)
{
    fprintf(stderr, "lost %llu events on CPU #%d\n", lost_cnt, cpu);
}

int main(int argc, char **argv)
{
    static const struct argp argp = {
        .options = opts,
        .parser = parse_arg,
        .doc = argp_program_doc,
    };
    struct perf_buffer *pb = NULL;
    struct tcpconnlat_bpf *obj;
    int err;

    err = argp_parse(&argp, argc, argv, 0, NULL, NULL);
    if (err)
        return err;

    libbpf_set_print(libbpf_print_fn);

    obj = tcpconnlat_bpf__open();
    if (!obj) {
        fprintf(stderr, "failed to open BPF object\n");
        return 1;
    }

    /* initialize global data (filtering options) */
    obj->rodata->targ_min_us = env.min_us;
    obj->rodata->targ_tgid = env.pid;

    if (fentry_can_attach("tcp_v4_connect", NULL)) {
        bpf_program__set_attach_target(obj->progs.fentry_tcp_v4_connect, 0, "tcp_v4_connect");
        bpf_program__set_attach_target(obj->progs.fentry_tcp_v6_connect, 0, "tcp_v6_connect");
        bpf_program__set_attach_target(obj->progs.fentry_tcp_rcv_state_process, 0, "tcp_rcv_state_process");
        bpf_program__set_autoload(obj->progs.tcp_v4_connect, false);
        bpf_program__set_autoload(obj->progs.tcp_v6_connect, false);
        bpf_program__set_autoload(obj->progs.tcp_rcv_state_process, false);
    } else {
        bpf_program__set_autoload(obj->progs.fentry_tcp_v4_connect, false);
        bpf_program__set_autoload(obj->progs.fentry_tcp_v6_connect, false);
        bpf_program__set_autoload(obj->progs.fentry_tcp_rcv_state_process, false);
    }

    err = tcpconnlat_bpf__load(obj);
    if (err) {
        fprintf(stderr, "failed to load BPF object: %d\n", err);
        goto cleanup;
    }

    err = tcpconnlat_bpf__attach(obj);
    if (err) {
        goto cleanup;
    }

    pb = perf_buffer__new(bpf_map__fd(obj->maps.events), PERF_BUFFER_PAGES,
                  handle_event, handle_lost_events, NULL, NULL);
    if (!pb) {
        fprintf(stderr, "failed to open perf buffer: %d\n", errno);
        goto cleanup;
    }

    /* print header */
    if (env.timestamp)
        printf("%-9s ", ("TIME(s)"));
    if (env.lport) {
        printf("%-6s %-12s %-2s %-16s %-6s %-16s %-5s %s\n",
            "PID", "COMM", "IP", "SADDR", "LPORT", "DADDR", "DPORT", "LAT(ms)");
    } else {
        printf("%-6s %-12s %-2s %-16s %-16s %-5s %s\n",
            "PID", "COMM", "IP", "SADDR", "DADDR", "DPORT", "LAT(ms)");
    }

    if (signal(SIGINT, sig_int) == SIG_ERR) {
        fprintf(stderr, "can't set signal handler: %s\n", strerror(errno));
        err = 1;
        goto cleanup;
    }

    /* main: poll */
    while (!exiting) {
        err = perf_buffer__poll(pb, PERF_POLL_TIMEOUT_MS);
        if (err < 0 && err != -EINTR) {
            fprintf(stderr, "error polling perf buffer: %s\n", strerror(-err));
            goto cleanup;
        }
        /* reset err to return 0 if exiting */
        err = 0;
    }

cleanup:
    perf_buffer__free(pb);
    tcpconnlat_bpf__destroy(obj);

    return err != 0;
}

后记

技术开悟的路,或者和人的成熟过程一样,只有现实的磨练才能得道。

image.png

image.png


MarkZhu
83 声望21 粉丝

Blog: [链接]


引用和评论

0 条评论