在前面文章里面,我们介绍了单链路的筛选与轨迹回溯,是从单次请求的视角来分析问题,类似查询某个快递订单的物流轨迹。但单次请求无法直观反映应用或接口整体服务状态,经常会由于网络抖动、宿主机 GC 等原因出现偶发性、不可控的随机离群点。当一个问题发生时,应用负责人或稳定性负责人需要首先判断问题的实际影响面,从而决定下一步应急处理动作。因此,我们需要综合一段时间内所有链路进行统计分析,这就好比我们评估某个物流中转站点效率是否合理,不能只看某一个订单,而要看一段时间内所有订单平均中转时间与出错率。
统计分析是我们观察、应用分布式链路追踪技术的重要手段。我们既可以根据不同场景要求进行实时的后聚合分析,也可以将常用的分析语句固化成规则生成预聚合指标,实现常态化监控与告警。
完整内容请点击下方链接查看:
https://developer.aliyun.com/article/1190427
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。