思路梳理
想要数据上传到FATE,首先需要reader读入数据,才能后续进行训练,首先要保证reader能读入数据,不知道是否能分批次读入?
上传数据后,FATE需要trainer进行训练,不止是否存在批次训练这种模式?
检查Reader类
值得注意的是,Reader类并不在federatedml库里面,而是一个单独的pipeline库里面的组件。翻阅后发现Reader类继承了Output类。而Output类带有一个关键字data type:
class Output(object):
def __init__(self, name, data_type='single', has_data=True, has_model=True, has_cache=False, output_unit=1):
if has_model:
self.model = Model(name).model
self.model_output = Model(name).get_all_output()
if has_data:
if data_type == "single":
self.data = SingleOutputData(name).data
self.data_output = SingleOutputData(name).get_all_output()
elif data_type == "multi":
self.data = TraditionalMultiOutputData(name)
self.data_output = TraditionalMultiOutputData(name).get_all_output()
else:
self.data = NoLimitOutputData(name, output_unit)
self.data_output = NoLimitOutputData(name, output_unit).get_all_output()
if has_cache:
self.cache = Cache(name).cache
self.cache_output = Cache(name).get_all_output()
对应的三个data type类也只不过是划分了data,并没有跟分批次相关的步骤
class SingleOutputData(object):
def __init__(self, prefix):
self.prefix = prefix
@property
def data(self):
return ".".join([self.prefix, IODataType.SINGLE])
@staticmethod
def get_all_output():
return ["data"]
class TraditionalMultiOutputData(object):
def __init__(self, prefix):
self.prefix = prefix
@property
def train_data(self):
return ".".join([self.prefix, IODataType.TRAIN])
@property
def test_data(self):
return ".".join([self.prefix, IODataType.TEST])
@property
def validate_data(self):
return ".".join([self.prefix, IODataType.VALIDATE])
@staticmethod
def get_all_output():
return [IODataType.TRAIN,
IODataType.VALIDATE,
IODataType.TEST]
class NoLimitOutputData(object):
def __init__(self, prefix, output_unit=1):
self.prefix = prefix
self.output_unit = output_unit
@property
def data(self):
return [self.prefix + "." + "data_" + str(i) for i in range(self.output_unit)]
def get_all_output(self):
return ["data_" + str(i) for i in range(self.output_unit)]
所以Reader应该是只能单次吞入整个数据集,不能够分批次读入。
检查Trainer
跟train相关的参数都在TrainerParam
里面。可是TrainerParam本身只是个存储参数的包装类,里面没有东西。
最终找到了一个job submitter的东西,也是通过传参,调用服务这种形式去做的Task。这些都是包皮,没有实际的代码。
最后在 federatedml.nn.homo.trainer.fedavg_trainer
里找到FedAvgTrainer,他里面给了参数,里面有batch size:
class FedAVGTrainer(TrainerBase):
"""
Parameters
----------
epochs: int >0, epochs to train
batch_size: int, -1 means full batch
secure_aggregate: bool, default is True, whether to use secure aggregation. if enabled, will add random number
mask to local models. These random number masks will eventually cancel out to get 0.
weighted_aggregation: bool, whether add weight to each local model when doing aggregation.
if True, According to origin paper, weight of a client is: n_local / n_global, where n_local
is the sample number locally and n_global is the sample number of all clients.
if False, simply averaging these models.
early_stop: None, 'diff' or 'abs'. if None, disable early stop; if 'diff', use the loss difference between
two epochs as early stop condition, if differences < tol, stop training ; if 'abs', if loss < tol,
stop training
tol: float, tol value for early stop
aggregate_every_n_epoch: None or int. if None, aggregate model on the end of every epoch, if int, aggregate
every n epochs.
cuda: bool, use cuda or not
pin_memory: bool, for pytorch DataLoader
shuffle: bool, for pytorch DataLoader
data_loader_worker: int, for pytorch DataLoader, number of workers when loading data
validation_freqs: None or int. if int, validate your model and send validate results to fate-board every n epoch.
if is binary classification task, will use metrics 'auc', 'ks', 'gain', 'lift', 'precision'
if is multi classification task, will use metrics 'precision', 'recall', 'accuracy'
if is regression task, will use metrics 'mse', 'mae', 'rmse', 'explained_variance', 'r2_score'
checkpoint_save_freqs: save model every n epoch, if None, will not save checkpoint.
task_type: str, 'auto', 'binary', 'multi', 'regression'
this option decides the return format of this trainer, and the evaluation type when running validation.
if auto, will automatically infer your task type from labels and predict results.
"""
我自己在FATE那里提的issue:https://github.com/FederatedAI/FATE/issues/4832
最后结论
在homo训练,自定义神经网络的场景下使用FedAvg训练器能够实现batch训练。但是Reader是否能加载进来,要看机器,因为Reader应该是一次性全部读取的。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。