头图

图表是处理数据的重要组成部分,因为它们是一种将大量数据压缩为易于理解的格式的方法。数据可视化可以让受众快速Get到重点。

数据可视化的图表类型极其丰富多样,而且每种都有不同的用例,通常,创建数据可视化最困难的部分是确定哪种图表类型最适合手头的任务。

本文中,数维图小编将为大家介绍数据可视化图表类型的第四篇 —— “部分与整体类”图表,使用这些图表。

堆积条形图

作为条形图(柱形图)的变体,堆积条形图/柱形图显示堆栈与整个条形或柱形之间的关系。整个条形/列也可以显示为 100%。在这种情况下,堆栈以百分比显示整个条形/列的相对部分。

图片

发散条形图

发散条形图(发散柱形图)是类似于常规条形图的图表。通常用于显示问卷或调查的结果,但不限于此用例,如上例所示。在发散条形图中,使用对比色来显示要比较的类别。此图表的一个非常常见的变体称为“发散堆叠条形图”,它添加了额外的段。换句话说,它与常规堆叠条形图非常相似,但中间有一个额外的基线。但是发散堆积条形图是堆积条形图的一个非常好的替代方案,因为它更容易将堆积条图与它进行比较。

图片

人口金字塔

与发散条形图非常相似,人口金字塔是一种专门可视化人口之间年龄和性别分布的图表。人口金字塔通常由人口统计学家使用,可以成为许多报告中非常简单和不错的补充。

图片

图标数组

图标数组是清楚地可视化单位比例的图形。图标数组使用图标矩阵,通常为 100.这些图标中的每一个都代表某物(即人)的一个单位。然后将图标的一部分着色以表示我们数据中的数值。其余图标可能显示为灰色甚至不存在。图标数组是一种非常常见的图形类型,非常容易解释。

图片

华夫饼图

华夫饼图与图标数组非常相似。但是,它不是使用不同的图标,而是由 100 个方形(甚至圆形)单元格组成的网格组成。每个单元格代表 1%。此网格模式通常显示实现目标(或完成百分比)的进度,但也可用于显示部分到整体的贡献。华夫饼图通常被称为饼图的方形替代品,并且非常容易解释。它们看起来确实像华夫饼。

图片

饼图

饼图可以说是最受欢迎的图表类型,是一种圆形图,可可视化部分与整体的关系。它显示了如何将数据划分为具有特定值的类别(切片),但它始终保持一个类别的值与这些类别的总和(饼图)之间的联系。这意味着切片加起来应该是一个逻辑总和。如果数据以百分比表示,则总数应向上舍入到一百。如果数据采用绝对值(例如美元),则类别应形成有意义的总计。饼图只适用于几个类别,否则,图表将变得不可读。当一个类别与其他类别相比非常大或非常小时,它也非常适合。

图片

圆环图

圆环图实际上与饼图相同,中间有一个空圆孔的明显区别,使其类似于甜甜圈。但是,圆环图的数据比饼图更好,并且数据由扇区的长度而不是表面表示,后者更易于解释。圆环图的另一个优点是,中心的空间可用于添加标题或从数据派生的重要值。

图片

半圆形圆环图

此图表的工作方式与普通饼图或圆环图相同,只是所有类别的总和会产生半个圆而不是一个完整的圆。它可以作为仪表图的基础,方法是使用切片显示进度或添加指针。

图片

玛莉美歌图

Marimekko 图表是一种二维堆积图,它通过不同段的不同高度和柱形宽度来描述数据。这些列将缩放以填充整个可用图表区。Marimekko最常用于分析营销和销售数据。

图片

矩形树状图

矩形树状图由多个类别组成,每个类别都有一个矩形。如果要处理数据中的子类别,则可以将这些类别细分为较小的矩形。矩形区域的大小传达值。因此,矩形树状图是快速查找类别内部和类别之间关系的非常有用的图表。另一个好处是有效利用空间,这使得同时显示大量数据变得容易。

图片

圆形树状图

圆形树状图用于使用嵌套圆圈显示分层数据。它就像树状图一样,但使用圆形而不是矩形。每个圆圈代表一个类别,其子类别位于其中。圆圈越大,该类别的价值就越大,反之亦然。

图片

树形图

树形图是表示树或网络结构的图。它由堆叠的分支组成,用于可视化分类关系(对象之间的分层关系)。树形图在生物学中通常用于显示基因的聚类,但它们可以说明任何类型的分组数据。

图片

维恩图

维恩图使用重叠的圆来说明两组或多组项目之间的逻辑关系。维恩图使用重叠的圆圈来说明概念、想法、类别或组之间的相似性、差异性和关系。组之间的相似性在圆圈的重叠部分表示,而差异在圆圈的非重叠部分表示。维恩图,也称为集合图或逻辑图,广泛用于数学、统计学、逻辑、教学、语言学、计算机科学和商业领域。

图片

旭日图

旭日图也称环形图、多级饼图等,是显示分层数据的理想选择。通过一系列环显示层次结构,这些环针对每个类别节点进行切片。每个环对应于层次结构中的一个级别,中心圆圈表示根节点,层次结构从根节点向外移动。具有多个类别级别的旭日图显示了外环与内环的关系。

图片

漏斗图

漏斗图是一种图形表示形式,可描绘连接的阶段和一系列数据值。在漏斗图中,因变量的值在流程的后续阶段会减小。漏斗图经常在演示文稿、报告、营销材料和仪表板中使用漏斗图来说明产品或服务的销售情况。每当需要显示随时间减少的数据时,都可以使用漏斗图。漏斗的每个部分都会显示总计的百分比,并且该值会随着向下移动而减小。所有部件加在一起的值应等于 100%。

图片

总结

综上所述,部分整体类图表具有明显的优势和适用场景,对个人和组织来说都是有用的工具,因为它以清晰易懂的方式有效地显示数据,从而更好地进行数据分析和决策。但同时,也需要注意到此类图表的不足之处,避免在不适合的场景使用。

希望本文能帮助您了解 “部分与整体类” 可视化图表,如果你想快速创建漂亮合适的数据可视化,可以尝试用 Sovitchart 在线数据可视化工具中设计,可以轻松制作出符合需求的图表。


可视化PaaS开发
18 声望2 粉丝

数维图,新一代低代码可视化平台厂商,以“赋能开发者、解决方案供应商”为使命,创新开发模式,提升开发效率,推动软件产业发展,为“数字中国”建设提速。