头图

摘要

为了验证当前集群经常出现索引超时以及请求拒绝的问题,现模拟线上集群环境及索引设置,通过压测工具随机生成测试数据,针对当前的 850 个分片的索引,以及减半之后的索引,以及更小分片索引的写入进行压测,使用不同的并发、不同的批次大小来观察索引的吞吐情况,并记录写入队列的堆积情况,用来分析分片数、批次数对写入的影响,从而确定后续的优化方案。

压测场景

Elasticsearch 版本 v7.7.1, 共有 57 个节点,其中 3 个独立 Master,3 个协调节点,31GB JVM。

压测流程

单索引 850 分片

索引定义

PUT idx-xxxx-xxxxxx
{
    "aliases" : {
      "alias-xxxx-xxxxxx" : { }
    },
    "mappings" : {
      "dynamic" : "strict",
      "_routing" : {
        "required" : true
      },
      "_source" : {
        "excludes" : [
          "isExtract*",
          "batchNo"
        ]
      },
      "properties" : {
        "addxxxx" : {
          "type" : "text",
          "term_vector" : "with_positions_offsets"
        },
        "clxxxx" : {
          "type" : "byte"
        },
        "contxxxx" : {
          "type" : "text",
          "boost" : 4.0,
          "term_vector" : "with_positions_offsets"
        },
        "conxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "con1xxxx" : {
          "type" : "text",
          "boost" : 16.0,
          "term_vector" : "with_positions_offsets",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "normalizer" : "keyword_normalizer"
            }
          },
          "analyzer" : "name_analyzer",
          "search_analyzer" : "keyword_analyzer"
        },
        "contSxxxx" : {
          "type" : "long",
          "index" : false,
          "doc_values" : false
        },
        "contSxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "contTxxxx" : {
          "type" : "short"
        },
        "crtxxxx" : {
          "type" : "date",
          "ignore_malformed" : true,
          "format" : "yyyyMMddHHmmss"
        },
        "duration" : {
          "type" : "long",
          "index" : false,
          "doc_values" : false
        },
        "largeTxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "md5" : {
          "type" : "keyword",
          "index" : false,
          "doc_values" : false
        },
        "orderxxxx" : {
          "type" : "alias",
          "path" : "contName.keyword"
        },
        "ownxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "ownxxxxxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "ownxxxxxxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "ownxxxxxxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "parenxxxxxxxxxx" : {
          "type" : "keyword"
        },
        "pathxx" : {
          "type" : "text",
          "boost" : 8.0,
          "term_vector" : "with_positions_offsets",
          "fields" : {
            "keyword" : {
              "type" : "keyword"
            }
          },
          "analyzer" : "path_analyzer"
        },
        "presexxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "presexxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "presxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "prixxxxxx" : {
          "type" : "short",
          "index" : false
        },
        "search_xxxxxx" : {
          "type" : "alias",
          "path" : "contName"
        },
        "servixxxxxx" : {
          "type" : "byte"
        },
        "shotxxxxxx" : {
          "type" : "date",
          "ignore_malformed" : true,
          "format" : "yyyyMMddHHmmss"
        },
        "xxxxxxlThuxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "tagxxxxxx" : {
          "type" : "text",
          "term_vector" : "with_positions_offsets"
        },
        "thumxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "xxxxxxpdxxxxxx" : {
          "type" : "date",
          "ignore_malformed" : true,
          "format" : "yyyyMMddHHmmss"
        },
        "xxxxxxderAcxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "xxxxxxerAccouxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "xxxxxxerxxxxxxID" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "xxxxxxderNxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        }
      }
    },
    "settings" : {
      "index" : {
        "max_ngram_diff" : "50",
        "refresh_interval" : "1s",
        "number_of_shards" : "850",

        "analysis" : {
          "normalizer" : {
            "keyword_normalizer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom"
            }
          },
          "analyzer" : {
            "keyword_analyzer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom",
              "tokenizer" : "keyword"
            },
            "name_analyzer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom",
              "tokenizer" : "name_tokenizer"
            },
            "path_analyzer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom",
              "tokenizer" : "path_tokenizer"
            }
          },
          "tokenizer" : {
            "name_tokenizer" : {
              "type" : "ngram",
              "min_gram" : "1",
              "max_gram" : "5"
            },
            "path_tokenizer" : {
              "pattern" : "/",
              "type" : "pattern"
            }
          }
        },
        "number_of_replicas" : "1"

      }
    }
  }

样例数据

POST idx-owncloud-img/_doc/1?routing=1
{
  "ownerxxxxxx" : "002#######0oV",
  "serxxxxxx" : 1,
  "tagxxxxxx" : "",
  "contxxxxxx" : "",
  "xxxxxxAccoxxxxxxe" : "1",
  "presxxxxxx" : "",
  "conxxxxxx" : "jpg",
  "xxxxxxerBxxxxxx" : "6#######573",
  "ownerxxxxxxx" : "13#######62",
  "presxxxxxxL" : "",
  "duxxxxxx" : 0,
  "paxxxxxx" : "00##########################################043",
  "crtxxxxxx" : "20#######45",
  "pxxxxxxtCatxxxxxx" : "001############################043",
  "sxxxxxxThumxxxxxx" : "http://downl#################################################961",
  "uxxxxxxerAxxxxxxt" : "1##############2",
  "uxxxxxxderAccoxxxxxxe" : "1",
  "uxxxxxxderxxxxxxID" : "0#####################V",
  "lxxxxxxhumxxxxxxl" : "http://d###################################D961",
  "thxxxxxxl" : "http://do###############################################################61",
  "axxxxxxss" : "",
  "uxxxxxxm" : "20##############8",
  "cxxxxxx" : 3,
  "coxxxxxx" : 1,
  "prxxxxxx" : 10,
  "coxxxxxx" : "0###################################cm",
  "co2xxxxxx" : 5##############8,
  "shoxxxxxx" : "20##############4",
  "contxxxxxx" : "mm##############g",
  "presxxxxxx" : "",
  "oxxxxxxBmpxxxxxx" : "6#######3",
  "md5" : "7##############1E"
}

loadgen 配置

root@loadgen:/opt/loadgen# cat loadgen.yml
statsd:
  enabled: false
  host: 192.168.3.98
  port: 8125
  namespace: loadgen.
variables:
  - name: ip
    type: file
    path: dict/ip.txt
  - name: message
    type: file
    path: dict/nginx.log
#  - name: user
#    type: file
#    path: dict/user.txt
  - name: id
    type: sequence
  - name: uuid
    type: uuid
  - name: now_local
    type: now_local
  - name: now_utc
    type: now_utc
  - name: now_unix
    type: now_unix
  - name: suffix
    type: range
    from: 12
    to: 12
  - name: bool
    type: range
    from: 0
    to: 1
requests:
  - request:
      method: POST
      runtime_variables:
        batch_no: id
      runtime_body_line_variables:
        routing_no: uuid
      basic_auth:
        username: elastic
        password: ####
      url: https://xxx.elasticsearch.xxx.cn:9243/_bulk
      body_repeat_times: 50
      body: "{ \"create\" : { \"_index\" : \"idx-xxxxxx-xxxxxx\",\"_type\":\"_doc\", \"_id\" : \"$[[uuid]]\" , \"routing\" : \"$[[routing_no]]\" } }\n{ \"ownerxxxxxx\" : \"0011WsjCK0oV\", \"servxxxxxx\" : $[[bool]], \"tagxxxxxx\" : \"\", \"contxxxxxx\" : \"\", \"ownexxxxxxunxxxxxx\" : \"$[[bool]]\", \"prxxxxxxentLxxxxxx\" : \"\", \"conxxxxxx\" : \"jpg\", \"uxxxxxxexxxxxxID\" : \"$[[id]]\", \"owxxxxxxccxxxxxxt\" : \"$[[routing_no]]\", \"prxxxxxxtUxxxxxxL\" : \"\", \"durxxxxxxn\" : 0, \"paxxxxxx\" : \"00019700101000000001/0011WsjCK0oV00019700101000000043\", \"crxxxxxx\" : \"$[[id]]\", \"paxxxxxxntxxxxxxogIxxxxxx\" : \"0011WsjCK0oV00019700101000000043\", \"sxxxxxxThumxxxxxx\" : \"http://xxx.xxx.cn:80/storageWeb/servlet/GetFileByURLServlet?root=/mnt/wfs133&fileid=KB1af35f100578d655b2cfbd7edd2cb50e.jpg&ct=1&type=0&code=80B0EAB7F429F1A32F76EB895F5FF4DE1853D254604FAB67A7C33FDF92BE7220&exp=315&account=MTM2MzgzMTU1NjI=&p=0&ui=0011WsjCK0oV&ci=0011WsjCK0oV06320210812125345tcm&userSiteId=usersite-s&cn=mmexport162592513503...&oprChannel=10000000&dom=D961\", \"xxxxxxderAxxxxxxnt\" : \"$[[routing_no]]\", \"upxxxxxxerAcxxxxxxtype\" : \"$[[bool]]\", \"uploaderNDUserID\" : \"$[[uuid]]\", \"largeThumbnail\" : \"http://xxx.xxx.cn:80/storageWeb/servlet/GetFileByURLServlet?root=/mnt/wfs133&fileid=KB1af35f100578d655b2cfbd7edd2cb50e.jpg&ct=1&type=1&code=80B0EAB7F429F1A32F76EB895F5FF4DE1853D254604FAB67A7C33FDF92BE7220&exp=315&account=MTM2MzgzMTU1NjI=&p=0&ui=0011WsjCK0oV&ci=0011WsjCK0oV06320210812125345tcm&userSiteId=usersite-s&cn=mmexport162592513503...&oprChannel=10000000&dom=D961\", \"xxxxxxil\" : \"http://download.xxx.xxx.com:80/storageWeb/servlet/GetFileByURLServlet?root=/mnt/wfs133&fileid=KB1af35f100578d655b2cfbd7edd2cb50e.jpg&ct=1&type=2&code=80B0EAB7F429F1A32F76EB895F5FF4DE1853D254604FAB67A7C33FDF92BE7220&exp=315&account=MTM2MzgzMTU1NjI=&p=0&ui=0011WsjCK0oV&ci=0011WsjCK0oV06320210812125345tcm&userSiteId=usersite-s&cn=mmexport162592513503...&oprChannel=10000000&dom=D961\", \"adxxxxxx\" : \"\", \"upxxxxxx\" : \"$[[now_unix]]\", \"cxxxxxx\" : 3, \"contxxxxxxe\" : $[[bool]], \"prixxxxxx\" : 10, \"conxxxxxx\" : \"0011WsjCK0oV06320210812125345tcm\", \"contxxxxxx\" : $[[id]], \"shoxxxxxx\" : \"$[[id]]\", \"contxxxxxxe\" : \"mmexport1625925135032.jpg\", \"prxxxxxxtHxxxxxx\" : \"\", \"oxxxxxxrBmxxxxxxID\" : \"$[[id]]\", \"md5\" : \"$[[uuid]]\" }\n"

运行测试

开启 gzip 流量压缩,执行压测:

root@loadgen:/opt/loadgen# ./loadgen-linux-amd64 -config loadgen.yml -d 6000 -c 100  -compress

1 副本 100 并发

screenshot-20230715-154045.png

0 副本 100 并发

screenshot-20230715-154105.png

0 副本 200 并发

screenshot-20230715-154119.png
写入队列已经存在大量堆积和拒绝的现象了:

screenshot-20230715-154143.png

1 副本 200 并发

screenshot-20230715-154158.png

screenshot-20230715-154216.png

1 副本 400 并发

screenshot-20230715-154230.png

1 副本 800 并发

image(8).png

image(9).png

1 副本批次 500 并发 100

image(10).png

image(11).png

1 副本批次 2000 并发 100

image(12).png

image(13).png

1 副本批次 5000 并发 100

image(14).png

1 副本批次 5000 并发 200

image(15).png

image(16).png

单索引 425 分片

索引定义

PUT idx-xxxxxx-xxxxxx-425
{
    "aliases" : {
      "alias-xxxxxx-xxxxxx" : { }
    },
    "mappings" : {
      "dynamic" : "strict",
      "_routing" : {
        "required" : true
      },
      "_source" : {
        "excludes" : [
          "isExtract*",
          "batchNo"
        ]
      },
      "properties" : {
        "addxxxxxx" : {
          "type" : "text",
          "term_vector" : "with_positions_offsets"
        },
        "cxxxxxx" : {
          "type" : "byte"
        },
        "coxxxxxxc" : {
          "type" : "text",
          "boost" : 4.0,
          "term_vector" : "with_positions_offsets"
        },
        "coxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "conxxxxxxe" : {
          "type" : "text",
          "boost" : 16.0,
          "term_vector" : "with_positions_offsets",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "normalizer" : "keyword_normalizer"
            }
          },
          "analyzer" : "name_analyzer",
          "search_analyzer" : "keyword_analyzer"
        },
        "coxxxxxxze" : {
          "type" : "long",
          "index" : false,
          "doc_values" : false
        },
        "conxxxxxxfix" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "coxxxxxxpe" : {
          "type" : "short"
        },
        "cxxxxxxm" : {
          "type" : "date",
          "ignore_malformed" : true,
          "format" : "yyyyMMddHHmmss"
        },
        "duxxxxxxon" : {
          "type" : "long",
          "index" : false,
          "doc_values" : false
        },
        "laxxxxxxbnail" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "md5" : {
          "type" : "keyword",
          "index" : false,
          "doc_values" : false
        },
        "ordxxxxxxNamxxxxxx" : {
          "type" : "alias",
          "path" : "contName.keyword"
        },
        "oxxxxxxccoxxxxxxt" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "owxxxxxxcounxxxxxxpe" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "owxxxxxxpUsxxxxxxD" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "oxxxxxxDUsexxxxxxD" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "pxxxxxxtalxxxxxxD" : {
          "type" : "keyword"
        },
        "patxxxxxx" : {
          "type" : "text",
          "boost" : 8.0,
          "term_vector" : "with_positions_offsets",
          "fields" : {
            "keyword" : {
              "type" : "keyword"
            }
          },
          "analyzer" : "path_analyzer"
        },
        "prxxxxxxntHxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "prxxxxxxntLxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "prxxxxxxURxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "pxxxxxxity" : {
          "type" : "short",
          "index" : false
        },
        "sxxxxxxch_nxxxxxxe" : {
          "type" : "alias",
          "path" : "contName"
        },
        "sexxxxxxeTxxxxxxe" : {
          "type" : "byte"
        },
        "sxxxxxxTm" : {
          "type" : "date",
          "ignore_malformed" : true,
          "format" : "yyyyMMddHHmmss"
        },
        "smxxxxxxThuxxxxxxl" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "taxxxxxxa" : {
          "type" : "text",
          "term_vector" : "with_positions_offsets"
        },
        "txxxxxxnaxxxxxx" : {
          "type" : "keyword",
          "boost" : 8.0,
          "index" : false,
          "doc_values" : false
        },
        "uxxxxxxm" : {
          "type" : "date",
          "ignore_malformed" : true,
          "format" : "yyyyMMddHHmmss"
        },
        "upxxxxxxdexxxxxxount" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "upxxxxxxrAcxxxxxxpe" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "upxxxxxxmpUsxxxxxx" : {
          "type" : "keyword",
          "doc_values" : false
        },
        "uxxxxxxerNDxxxxxxD" : {
          "type" : "keyword",
          "doc_values" : false
        }
      }
    },
    "settings" : {
      "index" : {
        "max_ngram_diff" : "50",
        "refresh_interval" : "1s",
        "number_of_shards" : "425",

        "analysis" : {
          "normalizer" : {
            "keyword_normalizer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom"
            }
          },
          "analyzer" : {
            "keyword_analyzer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom",
              "tokenizer" : "keyword"
            },
            "name_analyzer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom",
              "tokenizer" : "name_tokenizer"
            },
            "path_analyzer" : {
              "filter" : [
                "lowercase"
              ],
              "type" : "custom",
              "tokenizer" : "path_tokenizer"
            }
          },
          "tokenizer" : {
            "name_tokenizer" : {
              "type" : "ngram",
              "min_gram" : "1",
              "max_gram" : "5"
            },
            "path_tokenizer" : {
              "pattern" : "/",
              "type" : "pattern"
            }
          }
        },
        "number_of_replicas" : "1"

      }
    }
  }

1 副本批次 50 并发 100

image(17).png

image(18).png

1 副本批次 50 并发 200

1 副本批次 50 并发 400

1 副本批次 50 并发 800

1 副本批次 500 并发 100

image(19).png

screenshot-20230715-161033.png

1 副本批次 2000 并发 100

screenshot-20230715-161115.png

1 副本批次 5000 并发 100

screenshot-20230715-161131.png

screenshot-20230715-161145.png

单索引 50 分片

1 副本批次 50 并发 100

screenshot-20230715-161158.png

screenshot-20230715-161213.png

1 副本批次 500 并发 100

screenshot-20230715-161228.png

screenshot-20230715-161248.png

1 副本批次 1000 并发 100

screenshot-20230715-161322.png

screenshot-20230715-161335.png

1 副本批次 5000 并发 100

screenshot-20230715-161348.png

screenshot-20230715-161404.png

走网关单索引 425 分片

1 副本批次 50 并发 400>200

screenshot-20230715-161415.png

1 副本批次 500 并发 100

screenshot-20230715-161427.png

1 副本批次 500 并发 200

screenshot-20230715-161850.png

1 副本批次 500 并发 400

screenshot-20230715-161912.png

screenshot-20230715-161932.png

1 副本批次 5000 并发 100

screenshot-20230715-162016.png
screenshot-20230715-162029.png

screenshot-20230715-162043.png

1 副本批次 5000 并发 200

screenshot-20230715-162100.png

screenshot-20230715-162153.png

1 副本批次 5000 并发 400

screenshot-20230715-162206.png

screenshot-20230715-162217.png

走网关单索引 850 分片

1 副本批次 50 并发 400

screenshot-20230715-162227.png

1 副本批次 500 并发 400

screenshot-20230715-162239.png

1 副本批次 5000 并发 400

screenshot-20230715-162252.png

压测结果

索引数分片数副本数批次大小压测并发平均写入吞吐(eps)
185015010010,000
185005010030,000
185005020040,000
185015020018,000
185015040027,500
185015080029,700
1850150010030,187
18501200010068,000
18501500010098,915
18501500020078,462
142515010012,695
1425150010046818
142512000100100,000
142515000100130,000
15015010032,987
150150010096,207
15011000100147,719
15015000100156,961

走网关节点异步合并模式:

索引数分片数副本数批次大小压测并发平均写入吞吐(eps)
1425150100500
14251502001,000
14251504002,000
142515001004,800
142515002009,350
1425150040017,000
14251500010050,000
142515000200100,000
142515000400175,000
18501504002000
1850150040018,800
185015000400137,000

结论

大分片索引,850 或者 425,在并发即使只有 100 的情况下就有可能出现占满线程池,出现请求拒绝的情况,单个批次的文档数比较小的情况下,更容易出现。
而同样格式的索引,在 50 个分片的情况下,索引的吞吐是 425 分片的两倍,850 分片的三倍,且线程池基本上没有堆积,或者堆积很快处理完。单次请求的文档数越多,写入的效率越高。
某些场景下索引分片虽然做了 Routing 处理,但是超大分片索引存在严重的转发效率问题,建议按照业务维度,或者当前的 Routing 维度进行索引的划分,将超大索引拆分成若干个子索引,单个索引的分片数尽量不要超过 20 个。


极限实验室
1 声望2 粉丝

极限科技,全称极限数据(北京)科技有限公司,是一家专注于实时搜索与数据分析的软件公司。旗下品牌极限实验室(INFINI Labs)致力于打造极致易用的数据探索与分析体验。


引用和评论

0 条评论