目标受众
本文面向对大规模文档去重感兴趣,且对散列 (hashing) 、图 (graph) 及文本处理有一定了解的读者。
动机
老话说得好: 垃圾进,垃圾出 (garbage in, garbage out),把数据处理干净再输入给模型至关重要,至少对大语言模型如此。虽然现在一些明星大模型 (严格来讲,它们很多是 API) 的存在让大家恍惚产生了数据质量好像不那么重要了的错觉,但事实绝非如此。
在 BigScience 和 BigCode 项目中,在数据质量方面,我们面临的一个很大的问题是数据重复,这不仅包括训练集内的数据重复,还包括训练集中包含测试基准中的数据从而造成了基准污染 (benchmark contamination)。已经有研究表明,当训练集中存在较多重复数据时,模型倾向于逐字输出训练数据 [[1]](#1) (这一现象在其他一些领域并不常见 [[2]](#2)),而且训得的模型也更容易遭受隐私攻击 [[1]](#1)。除了能避免上面两个问题外,去重还有不少好处:
- 让训练更高效: 你可以用更少的训练步骤获得相同的,甚至是更好的性能 [[3]](#3) [[4]](#4)。
- 防止可能的数据泄漏和基准污染: 数据重复会损害你的模型性能报告的公信力,并可能让所谓的改进沦为泡影。
- 提高数据可得性。我们大多数人都负担不起重复下载或传输数千 GB 文本的成本,更不用说由此带来的额外训练成本了。对数据集进行去重,能使其更易于学习、传输及协作。
从 BigScience 到 BigCode
我想先分享一个故事,故事主要讲述我如何接受数据去重这一任务,过程如何,以及在此过程中我学到了什么。
一切开始于 LinkedIn 上的一次对话,当时 BigScience 已经开始几个月了。Huu Nguyen 注意到我在 GitHub 上的一个小项目并找到了我,问我是否有兴趣为 BigScience 做数据去重工作。我当然愿意了,尽管当时我完全没意识到由于数据量巨大,这项工作比想象中麻烦很多。
这项工作既有趣又充满挑战。挑战在于,我对处理如此大规模的数据并没有太多经验。但项目组的每个人仍然欢迎我、信任我,还给了我数千美元的云计算预算。有多少回,我不得不从睡梦中醒来,反复确认我是否关闭了那些云实例。我不停地在试验和错误中学习,在此过程中,新的视角被打开了。如果没有 BigScience,可能我永远不会有这种视角。
一年后的今天,我正在把从 BigScience 学到的东西应用到 BigCode 项目中去,去处理更大的数据集。除了英语 [[3]](#3) LLM 之外,我们已经再次证明数据去重也能改进代码模型 [[4]](#4) 的性能。有了数据去重,我们可以用更小的数据集达到更优的性能。现在,亲爱的读者,我想与你分享我学到的知识,希望你能透过数据去重的镜头一瞥 BigCode 项目的幕后故事。
下表列出了 BigScience 项目中各数据集使用的去重方法,以供参考:
数据集 | 输入数据量 | 输出数据尺寸或数据精简比 | 去重粒度 | 方法 | 参数 | 语种 | 耗时 |
---|---|---|---|---|---|---|---|
OpenWebText2[[5]](#5) | 对 URL 去重后: 193.89 GB(69M) | 使用 MinHash LSH 后: 65.86 GB(17M) | URL + 文档 | URL(精确匹配)+ 文档(MinHash LSH) | $(10, 0.5, ?, ?, ?)$ | 英语 | |
Pile-CC[[5]](#5) | ~306 GB | 227.12 GiB(~55M) | 文档 | 文档(MinHash LSH) | $(10, 0.5, ?, ?, ?) $ | 英语 | 数天 |
BNE5[[6]](#6) | 2 TB | 570 GB | 文档 | Onion | 5-元组 | 西班牙语 | |
MassiveText[[7]](#7) | 0.001 TB ~ 2.1 TB | 文档 | 文档(精确匹配 + MinHash LSH) | $(?, 0.8, 13, ?, ?)$ | 英语 | ||
CC100-XL[[8]](#8) | 0.01 GiB ~ 3324.45 GiB | URL + 段落 | URL(精确匹配) + 段落(精确匹配) | SHA-1 | 多语种 | ||
C4[[3]](#3) | 806.92 GB (364M) | 3.04% ~ 7.18% ↓ (训练集) | 子字符串或文档 | 子字符串(后缀数组)或文档(MinHash) | 后缀数组:50-词元,MinHash: $(9000, 0.8, 5, 20, 450)$ | 英语 | |
Real News[[3]](#3) | ~120 GiB | 13.63% ~ 19.4% ↓(训练集) | 同 C4 | 同 C4 | 同 C4 | 英语 | |
LM1B[[3]](#3) | ~4.40 GiB(30M) | 0.76% ~ 4.86% ↓(训练集) | 同 C4 | 同 C4 | 同 C4 | 英语 | |
WIKI40B[[3]](#3) | ~2.9M | 0.39% ~ 2.76% ↓(训练集) | 同 C4 | 同 C4 | 同 C4 | 英语 | |
BigScience ROOTS 语料集[[9]](#9) | 0.07% ~ 2.7% ↓ (文档) + 10.61% ~ 32.30% ↓ (子字符串) | 文档 + 子字符串 | 文档 (SimHash) + 子字符串 (后缀数组) | SimHash:6-元组,汉明距离(hamming distance)为 4,后缀数组:50-词元 | 多语种 | 12 小时 ~ 数天 |
下表是我们在创建 BigCode 的训练数据集 (训练数据皆为代码) 时所用的方法。这里,如果当遇到没有名字的数据集时,我们就用模型名称来代替。
模型 | 去重方法 | 参数 | 去重级别 |
---|---|---|---|
InCoder[[10]](#10) | 精确匹配 | 代码词元/MD5 + 布隆滤波(Bloom filtering) | 文档 |
CodeGen[[11]](#11) | 精确匹配 | SHA256 | 文档 |
AlphaCode[[12]](#12) | 精确匹配 | 忽略空格 | 文档 |
PolyCode[[13]](#13) | 精确匹配 | SHA256 | 文档 |
PaLM Coder[[14]](#14) | Levenshtein 距离 | 文档 | |
CodeParrot[[15]](#15) | MinHash + LSH | $(256, 0.8, 1)$ | 文档 |
The Stack[[16]](#16) | MinHash + LSH | $(256, 0.7, 5)$ | 文档 |
MinHash + LSH 参数 $(P, T, K, B, R)$ :
- $P$ 哈希函数的个数或排列的个数
- $T$ Jaccard 相似度阈值
- $K$ K- 元组
- $B$ 条带数
- $R$ 每条带包含的行数
我们做了一个简单的演示程序来说明这些参数对结果的影响: MinHash 数学演示。
例解 MinHash
在本节中,我们将详细介绍在 BigCode 中使用的 MinHash 方法的每个步骤,并讨论该方法的系统扩展性问题及其解决方案。我们以一个含有三个英文文档为例来演示整个工作流程:
doc_id | 内容 |
---|---|
0 | Deduplication is so much fun! |
1 | Deduplication is so much fun and easy! |
2 | I wish spider dog[[17]](#17) is a thing. |
MinHash 的典型工作流程如下:
- 词袋生成 (生成 n- 元组) 及指纹生成 (生成 MinHash): 将每个文档映射成一组哈希值。
- 局部敏感哈希 (LSH): 逐条带 (band) 的比较文档的相似性,并将相似的文档聚类以减少后续比较的次数。
- 去重: 决定保留或删除哪些重复文档。
词袋生成
与大多数文本应用一样,我们需要先把文本表示成词袋,这里我们通常使用 N- 元组词袋。在本例中,我们使用以单词为基本单元的 3- 元组 (即每 3 个连续单词组成一个元组),且不考虑标点符号。我们后面会回过头来讨论元组大小对性能的影响。
doc_id | 3-元组 |
---|---|
0 | {"Deduplication is so", "is so much", "so much fun"} |
1 | {'so much fun', 'fun and easy', 'Deduplication is so', 'is so much'} |
2 | {'dog is a', 'is a thing', 'wish spider dog', 'spider dog is', 'I wish spider'} |
这个操作的时间复杂度为 $\mathcal{O}(NM)$,其中 $N$ 表示文档数,而 $M$ 表示文档长度。也就是说,时间复杂度与数据集大小呈线性关系。我们可以用多进程或分布式计算来并行化词袋生成过程。
指纹计算
使用 MinHash 方法时,每个 N- 元组需要生成多个哈希值,此时我们通常要么 1) 使用不同的哈希函数进行多次哈希,要么 2) 使用一个哈希函数进行哈希后再进行多次重排。本例中,我们选择第二种方法,重排生成 5 个哈希值。 更多 MinHash 的变体可以参考 MinHash - 维基百科。
N-元组 | 哈希值 |
---|---|
Deduplication is so | [403996643, 2764117407, 3550129378, 3548765886, 2353686061] |
is so much | [3594692244, 3595617149, 1564558780, 2888962350, 432993166] |
so much fun | [1556191985, 840529008, 1008110251, 3095214118, 3194813501] |
对以上文档哈希矩阵中的每一列取最小值 —— 即 “MinHash” 中的 “Min” 的题中之义,我们就能得到该文档最终的 MinHash 值:
doc_id | MinHash |
---|---|
0 | [403996643, 840529008, 1008110251, 2888962350, 432993166] |
1 | [403996643, 840529008, 1008110251, 1998729813, 432993166] |
2 | [166417565, 213933364, 1129612544, 1419614622, 1370935710] |
从技术上讲,虽然我们通常取最小值,但这并不代表我们一定要取每列的最小值。其他顺序统计量也是可以的,例如最大值、第 k 个最小值或第 k 个最大值 [[21]](#21)。
在具体实现时,我们可以使用 numpy
来对这些操作进行向量化。该操作的时间复杂度为 $\mathcal{O}(NMK)$,其中 $K$ 是排列数。以下列出了我们的代码,它是基于 Datasketch 的实现修改而得的。
def embed_func(
content: str,
idx: int,
*,
num_perm: int,
ngram_size: int,
hashranges: List[Tuple[int, int]],
permutations: np.ndarray,
) -> Dict[str, Any]:
a, b = permutations
masks: np.ndarray = np.full(shape=num_perm, dtype=np.uint64, fill_value=MAX_HASH)
tokens: Set[str] = {" ".join(t) for t in ngrams(NON_ALPHA.split(content), ngram_size)}
hashvalues: np.ndarray = np.array([sha1_hash(token.encode("utf-8")) for token in tokens], dtype=np.uint64)
permuted_hashvalues = np.bitwise_and(
((hashvalues * np.tile(a, (len(hashvalues), 1)).T).T + b) % MERSENNE_PRIME, MAX_HASH
)
hashvalues = np.vstack([permuted_hashvalues, masks]).min(axis=0)
Hs = [bytes(hashvalues[start:end].byteswap().data) for start, end in hashranges]
return {"__signatures__": Hs, "__id__": idx}
熟悉 Datasketch 的读者可能会问,为什么我们要费心费力剥离 Datasketch 库提供的所有高级功能?其主要原因并不是因为我们要减少依赖项,而是因为我们想要尽可能地榨取 CPU 的算力。而将多个步骤融合到一个函数中,是更好利用计算资源的手段之一。
由于每个文档的计算互相独立,因此我们可以充分利用 datasets
库的 map
函数来实现并行化:
embedded = ds.map(
function=embed_func,
fn_kwargs={
"num_perm": args.num_perm,
"hashranges": HASH_RANGES,
"ngram_size": args.ngram,
"permutations": PERMUTATIONS,
},
input_columns=[args.column],
remove_columns=ds.column_names,
num_proc=os.cpu_count(),
with_indices=True,
desc="Fingerprinting...",
)
指纹计算完毕之后,每个文档都被映射成了一个整数数组。为了弄清楚哪些文档彼此相似,我们需要根据这些指纹对它们进行聚类。轮到 局部敏感哈希 (Locality Sensitive Hashing,LSH) 闪亮登场了。
局部敏感哈希 (LSH)
LSH 将指纹数组按行分成若干个条带 (band),每个条带的行数相同,如果遇到最后一个条带行数不足,我们就直接忽略它。以条带数 $b=2$ 为例,每个条带有 $r=2$ 行,具体组织如下:
doc_id | MinHash | 条带 |
---|---|---|
0 | [403996643, 840529008, 1008110251, 2888962350, 432993166] | [0:[403996643, 840529008], 1:[1008110251, 2888962350]] |
1 | [403996643, 840529008, 1008110251, 1998729813, 432993166] | [0:[403996643, 840529008], 1:[1008110251, 1998729813]] |
2 | [166417565, 213933364, 1129612544, 1419614622, 1370935710] | [0:[166417565, 213933364], 1:[1129612544, 1419614622]] |
若两个文档在某条带上 MinHash 值相同,这两个文档就会被聚到同一个桶中备选。
条带 ID | 条带值 | doc_ids |
---|---|---|
0 | [403996643, 840529008] | 0, 1 |
1 | [1008110251, 2888962350] | 0 |
1 | [1008110251, 1998729813] | 1 |
0 | [166417565, 213933364] | 2 |
1 | [1129612544, 1419614622] | 2 |
遍历 doc_ids
列的每一行,将其中的文档两两配对就生成了候选对。上表中,我们能生成一个候选对: (0, 1)
。
候选对生成后 ……
很多数据去重的论文或教程讲完上一节就结束了,但在实际项目中我们还涉及如何处理这些候选对的问题。通常,候选对生成后,我们有两个选择:
- 由于 MinHash 只是一个近似,所以仍需计算两个文档的 N- 元组集合的交并比来算得准确的 Jaccard 相似性。此时,因为 LSH 已经帮我们过滤了不少,所以最终参与计算的候选对的量会大大减少。在 BigCode 项目中,我们起初就采用了这种做法,效果相当不错。
- 我们还可以直接认可 LSH 选出来的相似对。这里面可能会有个问题: Jaccard 相似性不具传递性,也就是说 $A$ 相似于 $B$ 且 $B$ 相似于 $C$,并不意味着 $A$ 相似于 $C$。所以这里可能会有不少假阳性。通过在 The Stack 数据集上的实验,我们发现,直接认可 LSH 选出来的相似对在很大程度上能提高下游模型的性能,同时还节省了处理时间和训练时间。因此目前我们正慢慢开始转向这种方法。但是,这个经验并不是放之四海而皆准的,如果你准备在自己的数据集上仿效我们的做法,我们建议你在此之前好好检查你的数据集及其特点,然后作出数据驱动的决策。
最后,我们可以用生成的相似文本对构建一个图,在这个图中,重复的文档会被聚至同一个社区或同一个连通子图中。不幸的是, datasets
在这方面帮不上什么忙,因为现在我们需要类似 groupby
的功能,以根据 条带 ID 及 文档在该条带上的取值 对文档进行聚类。下面列出了我们尝试过的一些方案:
方案 1: 老办法,迭代数据集以创建图,然后用一个图处理库对其做社区检测或者连通分量检测。
我们测试下来,该方案的扩展性不怎么好,其原因是多方面的: 首先,整个数据集迭代起来很慢,而且内存消耗很大; 其次,诸如 graphtool
或 networkx
的市面上流行的图处理库创建图的开销较大。
方案 2: 使用流行的 Python 框架 (如 dask
) 及其高效的 groupby
操作。
但迭代慢和创建图慢的问题仍然存在。
方案 3: 迭代数据集并使用并查集 (union find data structure) 对文档进行聚类。
这个方案引入了一个很小的迭代开销,对中等数据集的有不错的效果不错,但在大数据集上还是慢。
for table in tqdm(HASH_TABLES, dynamic_ncols=True, desc="Clustering..."):
for cluster in table.values():
if len(cluster) <= 1:
continue
idx = min(cluster)
for x in cluster:
uf.union(x, idx)
方案 4: 对大数据集,使用 Spark。
我们已经知道到 LSH 的有些步骤是可以并行化的,我们可以用 Spark 来实现它们。Spark 的好处是,它开箱即支持分布式 groupBy
,而且也能很轻松地实现像 [[18]](#18) 这样的连通分量检测算法。注意,这里我们并没有使用 Spark 的原生 MinHash 实现,其原因是迄今为止我们所有的实验都源于 Datasketch,而 Datasketch 的 MinHash 实现与 Spark 的原生实现完全不同。我们希望之前的经验和教训能帮助到后面的工作,而不是另起炉灶,进入另一个消融实验的轮回,因此我们选择在 Spark 中自己实现 Datasketch 的 MinHash 算法。
edges = (
records.flatMap(
lambda x: generate_hash_values(
content=x[1],
idx=x[0],
num_perm=args.num_perm,
ngram_size=args.ngram_size,
hashranges=HASH_RANGES,
permutations=PERMUTATIONS,
)
)
.groupBy(lambda x:(x[0], x[1]))
.flatMap(lambda x: generate_edges([i[2] for i in x[1]]))
.distinct()
.cache()
)
以下是基于 [[18]](#18) 的简单连通分量检测算法的 Spark 实现。
a = edges
while True:
b = a.flatMap(large_star_map).groupByKey().flatMap(large_star_reduce).distinct().cache()
a = b.map(small_star_map).groupByKey().flatMap(small_star_reduce).distinct().cache()
changes = a.subtract(b).union(b.subtract(a)).collect()
if len(changes) == 0:
break
results = a.collect()
多亏了云计算提供商,我们可以使用 GCP DataProc 等服务轻松地搭建 一个 Spark 集群。 最终,我们把程序运行起来,只用了不到 4 小时就完成了 1.4 TB 数据的去重工作,每小时仅需 15 美元。
数据质量很重要
我们不可能爬着梯子登上月球。因此我们不仅要确保方向正确,还要确保方法正确。
早期,我们使用的参数主要来自 CodeParrot 的实验,消融实验表明这些参数确实提高了模型的下游性能 [[16]](#16)。后来,我们开始沿着这条路进一步探索,由此进一步确认了以下结论 [[4]](#4):
- 数据去重可以在缩小数据集 (6 TB VS. 3 TB) 规模的同时提高模型的下游性能
虽然我们还没有完全搞清楚其能力边界及限制条件,但我们确实发现更激进的数据去重 (6 TB VS. 2.4 TB) 可以进一步提高性能,方法有:
- 降低相似度阈值
- 使用更长的元组 (如: 一元组 → 五元组)
- 放弃误报检查,承受一小部分误报带来的数据损失
<center>
图例: 上述两幅图展示了相似性阈值和元组大小带来的影响,第一幅图使用 1- 元组,第二幅图使用 5- 元组。红色虚线表示相似性阈值: 低于该值的文档与同一簇中其他文档的相似性低于阈值,我们将其视为误报。
</center>
上面两幅图可以帮助我们理解为什么有必要仔细检查 CodeParrot 以及早期版本的 The Stack 训练数据上的误报: 这是使用 1- 元组的误报比例会很大; 上图还表明,将元组大小增加到 5,误报比例会显著降低。如果想激进点去重的话,阈值可以设低点。
还有实验表明,降低阈值会删除更多包含部分相似内容的文档,因此意味着提高了我们最想删除的那部分文档的查全率。
系统扩展性
<center> 图例: 数据去重时间与原始数据集规模的关系。测试基于 GCP 上的 15 个 c2d-standard-16 实例,每个实例每小时的成本约为 0.7 美元。</center>
<center> 图例: 集群在处理 JSON 数据集时的 CPU 使用率。</center>
上述扩展性数据未必非常严格,但也足够说明,在给定预算的情况下,数据去重耗时与数据集规模的关系应该是线性的。如果你仔细看一下处理 JSON 数据集 (The Stack 数据集的最大子集) 的集群资源使用情况,你会发现实际总计算时间 (图中第 2 和第 3 阶段) 主要都花在了 MinHash + LSH (图中第 2 阶段) 上,这与我们先前的分析一致,即第 2 阶段 d 的时间复杂度为 $ \mathcal{O}(NM) $ — 与数据体量成线性关系。
谨慎行事
数据去完重并不意味着万事大吉了,你仍然需要对数据进行彻底的探索和分析。此外,上文这些有关数据去重的发现来自于 The Stack 数据集,并不意味着它能无脑适用于其他数据集或语言。要构建一个好的训练数据集,我们仅仅迈出了万里长征的第一步,后面还有很多工作要做,例如数据质量过滤 (如过滤漏洞数据、毒性数据、偏见数据、模板生成的数据、个人身份数据等)。
我们还鼓励你在训练前像我们一样对数据集进行彻底的分析,因为大家的情况可能各不相同。例如,如果你的时间和计算预算都很紧张,那么数据去重可能不是很有帮助: @geiping_2022 提到基于子字符串的数据去重并没有提高他们模型的下游性能。在使用前,可能还需要对现存数据集进行彻底检查,例如,@gao_2020 声明他们只确保 Pile 本身及其子集都已去重,但不保证其与任何下游基准数据集没有重复,要不要对 Pile 与下游基准数据集进行去重取决于使用者自己。
在数据泄露和基准污染方面,还有很多需要探索的地方。由于 HumanEval 也是 GitHub Python 存储库之一,我们不得不重新训练了我们的代码模型。早期的工作还发现,最流行的编码基准之一的 MBPP[[19]](#19) 与许多 Leetcode 问题有很多相似之处 (例如,MBPP 中的任务 601 基本上是 Leetcode 646,任务 604 ≃ Leetcode 151)。我们都知道 GitHub 中不乏很多编程挑战赛题及其答案代码。如果居心叵测的人把所有基准测试的 Python 代码以不易察觉的方式上传到 Github,污染你所有的训练数据,这事儿就更难了。
后续方向
- 子串去重。尽管在英语 [[3]](#3) 上子串去重是有益的,但尚不清楚是否对代码数据也有用;
- 重复段落: 在一篇文档中重复多次的段落。 @rae_2021 分享了一些关于如何检测和删除它们的有趣的启发式方法。
- 使用模型嵌入进行语义级的去重。这是另外一套思路了,需要一整套去重、扩展性、成本、销蚀等各方面的实验和权衡。对此 [[20]](#20) 提出了一些有趣的看法,但我们仍然需要更多实际证据才能得出结论 (其文本去重工作仅参考了 @lee_2022a 的工作,而 @lee_2022a 的主张主要是去重有作用而并未证明其效果达到了 SOTA)。
- 优化。还有不少优化空间: 更好的质量评估标准、扩展性、对下游性能影响的分析等。
- 换个角度: 对相似数据,去重到什么程度就会开始损害性能?需要保留多少相似数据以保留数据的多样性又不至冗余?
致谢
题图中的表情符 (Hugging Face、圣诞老人、文档、巫师以及魔杖) 来自于 Noto Emoji (Apache 2.0)。我也庄严保证,这篇博文是我一个字一个字敲出来的,没有使用任何文本生成 API。
非常感谢 Huu Nguyen(@Huu) 和 Hugo Laurençon(@HugoLaurencon) 在 BigScience 项目中的合作,以及 BigCode 项目中每个人一路上的帮助!如果你发现任何错误,请随时联系我: mouchenghao at gmail dot com。
更多资源
- Datasketch (MIT)
- simhash-py 及 simhash-cpp (MIT)
- Deduplicating Training Data Makes Language Models Better (Apache 2.0)
- Gaoya (MIT)
- BigScience (Apache 2.0)
- BigCode (Apache 2.0)
参考文献
- [1] : Nikhil Kandpal, Eric Wallace, Colin Raffel, Deduplicating Training Data Mitigates Privacy Risks in Language Models, 2022
- [2] : Gowthami Somepalli, et al., Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models, 2022
- [3] : Katherine Lee, Daphne Ippolito, et al., Deduplicating Training Data Makes Language Models Better, 2022
- [4] : Loubna Ben Allal, Raymond Li, et al., SantaCoder: Don't reach for the stars!, 2023
- [5] : Leo Gao, Stella Biderman, et al., The Pile: An 800GB Dataset of Diverse Text for Language Modeling, 2020
- [6] : Asier Gutiérrez-Fandiño, Jordi Armengol-Estapé, et al., MarIA: Spanish Language Models, 2022
- [7] : Jack W. Rae, Sebastian Borgeaud, et al., Scaling Language Models: Methods, Analysis & Insights from Training Gopher, 2021
- [8] : Xi Victoria Lin, Todor Mihaylov, et al., Few-shot Learning with Multilingual Language Models, 2021
- [9] : Hugo Laurençon, Lucile Saulnier, et al., The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset, 2022
- [10] : Daniel Fried, Armen Aghajanyan, et al., InCoder: A Generative Model for Code Infilling and Synthesis, 2022
- [11] : Erik Nijkamp, Bo Pang, et al., CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis, 2023
- [12] : Yujia Li, David Choi, et al., Competition-Level Code Generation with AlphaCode, 2022
- [13] : Frank F. Xu, Uri Alon, et al., A Systematic Evaluation of Large Language Models of Code, 2022
- [14] : Aakanksha Chowdhery, Sharan Narang, et al., PaLM: Scaling Language Modeling with Pathways, 2022
- [15] : Lewis Tunstall, Leandro von Werra, Thomas Wolf, Natural Language Processing with Transformers, Revised Edition, 2022
- [16] : Denis Kocetkov, Raymond Li, et al., The Stack: 3 TB of permissively licensed source code, 2022
- [17] : Rocky | Project Hail Mary Wiki | Fandom
- [18] : Raimondas Kiveris, Silvio Lattanzi, et al., Connected Components in MapReduce and Beyond, 2014
- [19] : Jacob Austin, Augustus Odena, et al., Program Synthesis with Large Language Models, 2021
- [20]: Amro Abbas, Kushal Tirumala, et al., SemDeDup: Data-efficient learning at web-scale through semantic deduplication, 2023
- [21]: Edith Cohen, MinHash Sketches : A Brief Survey, 2016
英文原文: <url>https://huggingface.co/blog/dedup</url>
原文作者: Chenghao Mou
译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。
审校/排版: zhongdongy (阿东)
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。