题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
数据范围:1≤n≤40
要求:时间复杂度:O(n) ,空间复杂度: O(1)
示例1
输入:
2
返回值:
2
说明:
青蛙要跳上两级台阶有两种跳法,分别是:先跳一级,再跳一级或者直接跳两级。因此答案为2。
示例2
输入:
7
返回值:
21
思路
一只青蛙一次可以跳1阶或2阶,直到跳到第n阶,也可以看成这只青蛙从n阶往下跳,到0阶,按照原路返回的话,两种方法事实上可以的跳法是一样的——即怎么来的,怎么回去! 当青蛙在第n阶往下跳,它可以选择跳1阶到n−1,也可以选择跳2阶到n−2,即它后续的跳法变成了f(n−1)+f(n−2),这就变成了斐波那契数列。
解答代码
class Solution {
public:
/**
* @param number int整型
* @return int整型
*/
int jumpFloor(int number) {
// write code here
if (number == 1 || number == 2) {
return number;
}
int ret = 0;
int a = 1;
int b = 2;
for (int i = 3; i <= number; i++) {
ret = a + b;
a = b;
b = ret;
}
return ret;
}
};
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。