⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 37 篇文章,往期回顾请移步到文章末尾\~

周赛 357

T1. 故障键盘(Easy)

  • 标签:模拟、字符串

T2. 判断是否能拆分数组(Medium)

  • 标签:思维

T3. 找出最安全路径(Medium)

  • 标签:BFS、连通性、分层并查集、极大化极小、二分查找

T4. 子序列最大优雅度(Hard)

  • 标签:贪心、排序、堆


T1. 故障键盘(Easy)

https://leetcode.cn/problems/faulty-keyboard/

题解(模拟)

简单模拟题。

  • 在遇到 i 字符时对已填入字符进行反转,时间复杂度是 O(n^2);
  • 使用队列和标记位可以优化时间复杂度,在遇到 i 时修改标记位和写入方向,在最后输出时根据标记位输出,避免中间的反转操作。
class Solution {
public:
    string finalString(string s) {
        vector<char> dst;
        for (auto& c : s) {
            if (c == 'i') {
                reverse(dst.begin(), dst.end());
            } else {
                dst.push_back(c);
            }
        }
        return string(dst.begin(), dst.end());
    }
};
class Solution {
public:
    string finalString(string s) {
        deque<char> dst;
        bool rear = true;
        for (auto& c : s) {
            if (c == 'i') {
                rear = !rear;
            } else {
                if (rear) {
                    dst.push_back(c);
                } else {
                    dst.push_front(c);
                }
            }
        }
        return rear ? string(dst.begin(), dst.end()) : string(dst.rbegin(), dst.rend());
    }
};

复杂度分析:

  • 时间复杂度:$O(n)$ 线性遍历和输出时间;
  • 空间复杂度:$O(n)$ 临时字符串空间。

T2. 判断是否能拆分数组(Medium)

https://leetcode.cn/problems/check-if-it-is-possible-to-split-array/

题解(思维题)

思维题,主要题目的两个条件只要满足其中一个即可 😭

  • 条件 1:子数组的长度为 1 ⇒ 说明数组长度小于等于 2 的时候,一定可以满足(子数组的长度不大于 1);
  • 条件 2:子数组元素之和大于或等于  m ⇒ 需满足子数组 {a1, a2, a3} 与 {a4, a5, a6} 的子数组和均大于等于 m。

结合两个条件,如果我们能找到两个相邻的元素之和大于等于 m,那么总可以通过消除 1 个元素的方式完成题目要求。

例如在示例 3 [2, 3, 3, 2, 3] 中,我们以 [3,3] 为起点倒推:

  • [3, 3]
  • [2, 3, 3] 消除 2
  • [2, 3, 3, 2] 消除 2
  • [2, 3, 3, 2, 3] 消除 3
class Solution {
public:
    bool canSplitArray(vector<int>& nums, int m) {
        // 2 | 3, 3 | 2 | 3
        // 1, 3, 2, 2, 3
        // 1, 1, 1, 3, 3
        if (nums.size() <= 2) return true;
        for (int i = 1; i < nums.size(); i++) {
            if (nums[i] + nums[i - 1] >= m) return true;
        }
        return false;
    }
};

复杂度分析:

  • 时间复杂度:$O(n)$ 线性遍历时间;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

T3. 找出最安全路径(Medium)

https://leetcode.cn/problems/find-the-safest-path-in-a-grid/

题解一(多源 BFS + 二分答案)

根据题目描述,每个节点的安全系数定位为该节点到「小偷」节点的最小曼哈顿距离,而题目要求是寻找从 0 到 n-1 的最大安全系数。「使得最小曼哈顿距离最大」暗示可能是需要使用二分答案的极大化极小问题。

  • 多源 BFS 预处理: 先从每个「小偷」节点开始走 BFS 更新相邻节点的最小曼哈顿距离,单次 BFS 的时间复杂度是 O(n^2),虽然我们可以用剪枝优化,但整体的时间复杂度上界是 O(n^4)。为了优化时间复杂度,我们使用多源 BFS(也可以理解为拓扑排序,每次弹出的节点的曼哈顿距离最小),整体的时间仅为 O(n^2);
  • 二分答案: 安全系数与路径可达性存在单调性:

    • 当安全系数越大时,越不容易可达;
    • 当安全系数越小时,越容易可达。
    • 安全系数的下界为 0,上界为 n * 2 - 1,通过二分答案寻找满足可达性的最大安全系数:
class Solution {
    fun maximumSafenessFactor(grid: List<List<Int>>): Int {
        val INF = Integer.MAX_VALUE
        val directions = arrayOf(intArrayOf(0,1), intArrayOf(1,0), intArrayOf(0,-1), intArrayOf(-1,0))
        val n = grid.size
        // 特判
        if (grid[0][0] == 1 || grid[n - 1][n - 1] == 1) return 0
        // 多源 BFS(拓扑排序)
        val safe = Array(n) { IntArray(n) { -1 }}
        var queue = LinkedList<IntArray>()
        for (r in 0 until n) {
            for (c in 0 until n) {
                if (grid[r][c] == 1) {
                    queue.offer(intArrayOf(r, c))
                    safe[r][c] = 0
                }
            }
        }
        while (!queue.isEmpty()) {
            val temp = LinkedList<IntArray>()
            for (node in queue) {
                for (direction in directions) {
                    val newX = node[0] + direction[0]
                    val newY = node[1] + direction[1]
                    if (newX < 0 || newX >= n || newY < 0 || newY >= n || safe[newX][newY] != -1) continue
                    temp.offer(intArrayOf(newX, newY))
                    safe[newX][newY] = safe[node[0]][node[1]] + 1
                }
            }
            queue = temp
        }

        // for (row in safe) println(row.joinToString())

        // BFS(检查只通过大于等于 limit 的格子,能否到达终点)
        fun check(limit: Int) : Boolean {
            val visit = Array(n) { BooleanArray(n) }
            var queue = LinkedList<IntArray>()
            queue.offer(intArrayOf(0, 0))
            visit[0][0] = true
            while (!queue.isEmpty()) {
                val temp = LinkedList<IntArray>()
                for (node in queue) {
                    // 终止条件
                    if (node[0] == n - 1 && node[1] == n - 1) return true
                    for (direction in directions) {
                        val newX = node[0] + direction[0]
                        val newY = node[1] + direction[1]
                        if (newX < 0 || newX >= n || newY < 0 || newY >= n || visit[newX][newY] || safe[newX][newY] < limit) continue
                        temp.offer(intArrayOf(newX, newY))
                        visit[newX][newY] = true
                    }
                }
                queue = temp
            }
            return false
        }

        // 二分查找
        var left = 0
        var right = Math.min(safe[0][0], safe[n - 1][n - 1])
        while (left < right) {
            val mid = (left + right + 1) ushr 1
            if (!check(mid)) {
                right = mid - 1
            } else {
                left = mid
            }
        }
        return left
    }
}

复杂度分析:

  • 时间复杂度:$O(n^2·lgn^2)$ 其中 多源 BFS 时间为 $O(n^2)$,单次检查的 BFS 时间复杂度为 $O(n^2)$,二分的次数为 $lgn^2$,整体时间复杂度是 $O(n^2·lgn^2)$;
  • 空间复杂度:$O(n^2)$ safe 安全系数矩阵空间。

题解二(多源 BFS + 堆)

思路参考雪景式的题解。

在题解一预处理的基础上,同样走一次 BFS 也能够算出最大安全系数,思路类似于 Dijkstra 最最短路算法中使用当前最短路最短的节点去松弛相邻边,我们优先让当前曼哈顿距离最大的节点去松弛相邻节点,以保证每个节点都能够从较大的路径转移过来。

class Solution {
    fun maximumSafenessFactor(grid: List<List<Int>>): Int {
        ...
        // 类最短路(使用曼哈顿距离最大的节点去松弛相邻边)
        val heap = PriorityQueue<IntArray>() { e1, e2 ->
            e2[0] - e1[0]
        }
        heap.offer(intArrayOf(safe[0][0], 0, 0))
        val visit = Array(n) { BooleanArray(n) }
        visit[0][0] = true
        while (!heap.isEmpty()) {
            val node = heap.poll()
            if (node[1] == n - 1 && node[2] == n - 1) return node[0]
            for (direction in directions) {
                val newX = node[1] + direction[0]
                val newY = node[2] + direction[1]
                if (newX < 0 || newX >= n || newY < 0 || newY >= n || visit[newX][newY]) continue
                // 松弛相邻边
                heap.offer(intArrayOf(Math.min(node[0], safe[newX][newY]), newX, newY))
                visit[newX][newY] = true
            }
        }
        return 0
    }
}

复杂度分析:

  • 时间复杂度:$O(n^2·lgn^2)$ 其中 多源 BFS 时间为 $O(n^2)$,基于堆的 BFS 的时间复杂度为 $O(n^2·lgn^2)$;
  • 空间复杂度:$O(n^2)$ safe 安全系数矩阵空间。

题解三(多源 BFS + 分层并查集)

思路参考灵神的题解。

其实,求从 0 到 n - 1 的最大安全系数,也相当于连通性问题的变形,而连通性问题有并查集的解法。为了求得最大安全系数,我们使用分层并查集:

  • 首先,在预处理阶段求出每个节点的最小曼哈顿距离,并将节点按照曼哈顿距离分类;
  • 其次,我们从最大的曼哈顿距离开始逆序合并,当 0 和 n - 1 连通时返回结果。
class Solution {
    fun maximumSafenessFactor(grid: List<List<Int>>): Int {
        val directions = arrayOf(intArrayOf(0,1), intArrayOf(1,0), intArrayOf(0,-1), intArrayOf(-1,0))
        val n = grid.size
        // 特判
        if (grid[0][0] == 1 || grid[n - 1][n - 1] == 1) return 0
        // 多源 BFS(拓扑排序)
        val safe = Array(n) { IntArray(n) { -1 }}
        // 分层
        val groups = LinkedList<LinkedList<IntArray>>()
        var queue = LinkedList<IntArray>()
        for (r in 0 until n) {
            for (c in 0 until n) {
                if (grid[r][c] == 1) {
                    queue.offer(intArrayOf(r, c))
                    safe[r][c] = 0
                }
            }
        }
        groups.add(queue)
        while (!queue.isEmpty()) {
            val temp = LinkedList<IntArray>()
            for (node in queue) {
                for (direction in directions) {
                    val newX = node[0] + direction[0]
                    val newY = node[1] + direction[1]
                    if (newX < 0 || newX >= n || newY < 0 || newY >= n || safe[newX][newY] != -1) continue
                    temp.offer(intArrayOf(newX, newY))
                    safe[newX][newY] = safe[node[0]][node[1]] + 1
                }
            }
            queue = temp
            if (!queue.isEmpty()) groups.add(queue)
        }

        // for (row in safe) println(row.joinToString())
        // for (row in groups) println(row.joinToString())

        val helper = UnionFind(n)
        // 逆序合并
        for (i in groups.size - 1 downTo 0) {
            for (node in groups[i]) {
                val x = node[0]
                val y = node[1]
                for (direction in directions) {
                    val newX = x + direction[0]
                    val newY = y  + direction[1]
                    // 合并曼哈顿距离大于等于当前层的节点
                    if (newX < 0 || newX >= n || newY < 0 || newY >= n || safe[newX][newY] < i) continue
                    helper.union(x * n + y, newX * n + newY)
                }
            }
            if (helper.find(0) == helper.find(n * n - 1)) return i
        }
        return 0
    }

    class UnionFind(private val n: Int) {
        private val parents = IntArray(n * n) { it }
        private val ranks = IntArray(n * n)

        fun find(x: Int): Int {
            var cur = x
            while (cur != parents[cur]) {
                parents[cur] = parents[parents[cur]]
                cur = parents[cur]
            }
            return cur
        }

        fun union(x: Int, y: Int) {
            val rootX = find(x)
            val rootY = find(y)
            if (ranks[rootX] < ranks[rootY]) {
                parents[rootX] = rootY
            } else if (ranks[rootX] > ranks[rootY]){
                parents[rootY] = rootX
            } else {
                parents[rootY] = rootX
                ranks[rootX]++
            }
        }
    }
}

复杂度分析:

  • 时间复杂度:$O(n^2)$ 其中 多源 BFS 时间为 $O(n^2)$,基于路径压缩和按秩合并的并查集时间复杂度为 $O(n^2)$;
  • 空间复杂度:$O(n^2)$ safe 安全系数矩阵空间。

T4. 子序列最大优雅度(Hard)

https://leetcode.cn/problems/maximum-elegance-of-a-k-length-subsequence/

题解(反悔贪心 + 堆)

  • 固定一个维度: 题目定义的优雅度 total_profit + distinct_categories^2 存在两个维度的变量,我们考虑固定其中一个维度来简化问题讨论:

    • 对所有节点按照利润从大到小逆序排列,并选择前 k 个节点,此时的 total_profit 是最大的;
    • 在此基础上,我们继续遍历剩余的 n - k 个节点,并考虑替换前 k 个节点中的某个节点,由于已经选择的节点 total_profit 是最大的,因此需要让替换后的类目数变多。
  • 分类讨论(替换哪个):

    • 1、如果某个已选节点与第 i 个节点的类目相同,那么替换后不会让类目数变大,不可能让优雅度变大;
    • 2、如果某个已选节点与第 i 个节点的类目不同,但只出现一次,那么替换出不会让类目变大,不可能让优雅度变大。否则,如果出现多次,替换后类目数变大,有可能让优雅度变大;
    • 3、为了让优雅度尽可能大,我们期望替换后的 total_profit 的减少量尽可能小,同时数目类别应该增大,否则无法获得更大的优雅度。为了让替换后的 total_profit 的减少量尽可能小,我们应该替换已选列表中利润最小同时重复的节点。
  • 怎么高效替换:

    • 使用堆维护利润最小同时重复的元素,由于我们是从大到小线性枚举的,因此直接使用线性表模拟堆的能力;
    • 新替换进去的不会被替换出去(想想为什么)。
class Solution {
    fun findMaximumElegance(items: Array<IntArray>, k: Int): Long {
        Arrays.sort(items) { e1, e2 ->
            e2[0] - e1[0]
        }
        var ret = 0L
        var totalProfit = 0L
        // duplicate:小顶堆
        val duplicate = LinkedList<Int>()
        // categorySet:类目表
        val categorySet = HashSet<Int>()
        for ((i, item) in items.withIndex()) {
            val profit = item[0]
            val category = item[1]
            if (i < k) {
                totalProfit += item[0]
                // 记录重复节点
                if (categorySet.contains(category)) {
                    duplicate.add(profit)
                }
                categorySet.add(category)
            } else if (!duplicate.isEmpty() && !categorySet.contains(category)){
                // 替换
                totalProfit += profit - duplicate.pollLast()
                categorySet.add(category)
            } else {
                // 不会让类目数量变大
            }
            // println(duplicate.joinToString())
            ret = Math.max(ret, totalProfit + 1L * categorySet.size * categorySet.size)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:$O(nlgn)$ 瓶颈在排序;
  • 空间复杂度:$O(n)$ 堆空间。

推荐阅读

LeetCode 上分之旅系列往期回顾:

⭐️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群\~


彭旭锐
31 声望12 粉丝