题目
题目链接:餐馆营业额变化增长
你是餐馆的老板,现在你想分析一下可能的营业额变化增长(每天至少有一位顾客)。
计算以 7 天(某日期 + 该日期前的 6 天)为一个时间段的顾客消费平均值。average_amount 要 保留两位小数。
结果按 visited_on 升序排序。
返回结果格式的例子如下。
Create table If Not Exists Customer (customer_id int, name varchar(20), visited_on date, amount int);
Truncate table Customer;
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-01', '100');
insert into Customer (customer_id, name, visited_on, amount) values ('2', 'Daniel', '2019-01-02', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('3', 'Jade', '2019-01-03', '120');
insert into Customer (customer_id, name, visited_on, amount) values ('4', 'Khaled', '2019-01-04', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('5', 'Winston', '2019-01-05', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('6', 'Elvis', '2019-01-06', '140');
insert into Customer (customer_id, name, visited_on, amount) values ('7', 'Anna', '2019-01-07', '150');
insert into Customer (customer_id, name, visited_on, amount) values ('8', 'Maria', '2019-01-08', '80');
insert into Customer (customer_id, name, visited_on, amount) values ('9', 'Jaze', '2019-01-09', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-10', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('3', 'Jade', '2019-01-10', '150');
-- 时间不连续的例子
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-01', '100');
insert into Customer (customer_id, name, visited_on, amount) values ('4', 'Khaled', '2019-01-04', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('5', 'Winston', '2019-01-05', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('6', 'Elvis', '2019-01-06', '140');
insert into Customer (customer_id, name, visited_on, amount) values ('7', 'Anna', '2019-01-07', '150');
insert into Customer (customer_id, name, visited_on, amount) values ('8', 'Maria', '2019-01-08', '80');
insert into Customer (customer_id, name, visited_on, amount) values ('9', 'Jaze', '2019-01-09', '110');
insert into Customer (customer_id, name, visited_on, amount) values ('1', 'Jhon', '2019-01-10', '130');
insert into Customer (customer_id, name, visited_on, amount) values ('3', 'Jade', '2019-01-10', '150');
Customer 表:
+-------------+--------------+--------------+-------------+
| customer_id | name | visited_on | amount |
+-------------+--------------+--------------+-------------+
| 1 | Jhon | 2019-01-01 | 100 |
| 2 | Daniel | 2019-01-02 | 110 |
| 3 | Jade | 2019-01-03 | 120 |
| 4 | Khaled | 2019-01-04 | 130 |
| 5 | Winston | 2019-01-05 | 110 |
| 6 | Elvis | 2019-01-06 | 140 |
| 7 | Anna | 2019-01-07 | 150 |
| 8 | Maria | 2019-01-08 | 80 |
| 9 | Jaze | 2019-01-09 | 110 |
| 1 | Jhon | 2019-01-10 | 130 |
| 3 | Jade | 2019-01-10 | 150 |
+-------------+--------------+--------------+-------------+
在 SQL 中,(customer_id, visited_on) 是该表的主键。
该表包含一家餐馆的顾客交易数据。
visited_on 表示 (customer_id) 的顾客在 visited_on 那天访问了餐馆。
amount 是一个顾客某一天的消费总额。
输出:
+--------------+--------------+----------------+
| visited_on | amount | average_amount |
+--------------+--------------+----------------+
| 2019-01-07 | 860 | 122.86 |
| 2019-01-08 | 840 | 120 |
| 2019-01-09 | 840 | 120 |
| 2019-01-10 | 1000 | 142.86 |
+--------------+--------------+----------------+
解释:
第一个七天消费平均值从 2019-01-01 到 2019-01-07 是restaurant-growth/restaurant-growth/ (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86
第二个七天消费平均值从 2019-01-02 到 2019-01-08 是 (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120
第三个七天消费平均值从 2019-01-03 到 2019-01-09 是 (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120
第四个七天消费平均值从 2019-01-04 到 2019-01-10 是 (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86
本题考察的知识是如何累加一段时间区间内的值
有两种实现方式:
- 使用窗口函数,窗口函数比较好理解使用
6 PRECEDING AND current ROW
就能查找出来了(方案一) - 使用自连,连接条件不太容易想到,需要使用
DATEDIFF
函数,这个函数可以计算两个日期之间的天数,然后使用BETWEEN
条件(方案二和方案三)
解析
要知道过去
7
天的平均消费额,需要先知道每天的总消费额,作为临时表tmp1
select visited_on, sum(amount) sum_amount from Customer group by visited_on
+-------------+--------------+ | visited_on | sum_amount | +-------------+--------------+ | 2019-01-01 | 100 | | 2019-01-02 | 110 | | 2019-01-03 | 120 | | 2019-01-04 | 130 | | 2019-01-05 | 110 | | 2019-01-06 | 140 | | 2019-01-07 | 150 | | 2019-01-08 | 80 | | 2019-01-09 | 110 | | 2019-01-10 | 280 | +-------------+--------------+
使用窗口函数,计算过去
7
天的总的消费额,作为临时表tmp2
select sum(sum_amount) sum_amount over (order by to_days(visited_on) range between 6 preceding and current row) as sum_amount from tmp1
| visited_on | sum_amount | +-------------+--------------+ | 2019-01-01 | 100 | | 2019-01-02 | 210 | | 2019-01-03 | 330 | | 2019-01-04 | 460 | | 2019-01-05 | 570 | | 2019-01-06 | 710 | | 2019-01-07 | 860 | | 2019-01-08 | 840 | | 2019-01-09 | 840 | | 2019-01-10 | 1000 | +-------------+--------------+
计算过去
7
天的平均消费额,作为临时表tmp3
select visited_on, sum_amount amount, sum_amount / 7 as average_amount from tmp2
| visited_on | sum_amount | average_amount | +-------------+--------------+----------------+ | 2019-01-01 | 100 | 14.2857 | | 2019-01-02 | 210 | 30.0000 | | 2019-01-03 | 330 | 47.1429 | | 2019-01-04 | 460 | 65.7143 | | 2019-01-05 | 570 | 81.4286 | | 2019-01-06 | 710 | 101.4286 | | 2019-01-07 | 860 | 122.8571 | | 2019-01-08 | 840 | 120.0000 | | 2019-01-09 | 840 | 120.0000 | | 2019-01-10 | 1000 | 142.8571 | +-------------+-------------+----------------+
- 筛选出计算数据大于等于七天的数据
- 需要知道表中日期最小的一天,作为临时表 `tmp4`
`select min(visited_on) min_visited_on from Customer`
```
| min_visited_on |
+-----------------+
| 2019-01-01 |
+-----------------+
```
- 使用 `datediff(expr1, expr2)` 函数,计算两个日期之间的天数,这里需要大于等于 `6` 天
`select visited_on, amount, round(average_amount, 2) average_amount from tmp3 where datediff(visited_on, (select min(visited_on) from Customer)) >= 6`
```
| visited_on | amount | average_amount |
+-------------+--------------+----------------+
| 2019-01-07 | 860 | 122.8571 |
| 2019-01-08 | 840 | 120.0000 |
| 2019-01-09 | 840 | 120.0000 |
| 2019-01-10 | 1000 | 142.8571 |
+-------------+--------------+----------------+
```
最终 sql
语句如下:
SELECT
visited_on,
sum_amount amount,
ROUND( sum_amount / 7, 2 ) average_amount
FROM (
SELECT
visited_on,
SUM( sum_amount ) OVER ( ORDER BY to_days(visited_on) RANGE BETWEEN 6 PRECEDING AND current ROW ) sum_amount
FROM (
SELECT
visited_on,
SUM( amount ) sum_amount
FROM Customer
GROUP BY visited_on
) tmp1
) tmp2
WHERE DATEDIFF(visited_on, ( SELECT MIN( visited_on ) FROM Customer )) >= 6;
上面 sql
可以简化一下,不过有问题,就是如果时间不连续,排序不会跳过。
也就是说 rk > 7
只能筛选出连续 7
天的数据
SELECT
visited_on,
amount,
SUM( amount / 7, 2 ) average_amount
FROM (
SELECT
visited_on,
RANK() OVER ( ORDER BY visited_on ) AS rk,
SUM(SUM( amount )) OVER ( ORDER BY visited_on RANGE INTERVAL 7-1 DAY PRECEDING ) AS amount
FROM Customer GROUP BY visited_on
) AS tep WHERE rk >= 7 ORDER BY 1
方法二
此方法是使用自连,连接的条件是时间连续 7
天,这个方法如果时间不连续,就会有问题
WITH t AS (
SELECT visited_on, SUM( amount ) amount FROM Customer GROUP BY visited_on
)
SELECT a.visited_on, SUM( b.amount ) amount, ROUND( AVG( b.amount ), 2 ) average_amount
FROM t a, t b
WHERE DATEDIFF( a.visited_on, b.visited_on ) BETWEEN 0 AND 6
GROUP BY a.visited_on COUNT(*) = 7;
方法三
SELECT
a.visited_on,
sum( b.amount ) AS amount,
round( sum( b.amount ) / 7, 2 ) AS average_amount
FROM
( SELECT DISTINCT visited_on FROM Customer ) a
JOIN Customer b ON datediff( a.visited_on, b.visited_on ) BETWEEN 0 AND 6
WHERE
a.visited_on >= ( SELECT min( visited_on ) FROM Customer ) + 6
GROUP BY a.visited_on
ORDER BY visited_on
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。