image.png

alertmanager整体的架构,官方的这张图说的很清楚,本文从源码的角度,分析其各个模块,以及模块间的交互流程。

alertmanager的代码使用v0.24.0版本。

一.API接收alerts

接口alerts的API为:

  • POST /api/v2/alerts

该API的handler如下:

  • 该handler先进行数据转换后,再进行数据校验,最后放入alerts数据结构;
// api/v2/api.go
func (api *API) postAlertsHandler(params alert_ops.PostAlertsParams) middleware.Responder {
    ...
    alerts := OpenAPIAlertsToAlerts(params.Alerts)
    ...
    for _, a := range alerts {
        removeEmptyLabels(a.Labels)

        if err := a.Validate(); err != nil {
            validationErrs.Add(err)
            api.m.Invalid().Inc()
            continue
        }
        validAlerts = append(validAlerts, a)
    }
    if err := api.alerts.Put(validAlerts...); err != nil {
        level.Error(logger).Log("msg", "Failed to create alerts", "err", err)
        return alert_ops.NewPostAlertsInternalServerError().WithPayload(err.Error())
    }
    ...
}

alerts对象在main中初始化:

  • 该对象类型=mem.Alerts类型;
// cmd/alertmanager/main.go

func run() int {
    ...
    alerts, err := mem.NewAlerts(context.Background(), marker, *alertGCInterval, nil, logger)
    api, err := api.New(api.Options{
        Alerts:      alerts,
        ...
    })
    ...
}

mem.Alerts将alerts数据,放入其中的alerts对象(store.Alerts类型)中:

  • store.Alerts中以map结构保存告警对象,保存在内存中;
// provider/mem/mem.go

func (a *Alerts) Put(alerts ...*types.Alert) error {
    for _, alert := range alerts {
        fp := alert.Fingerprint()
        ...
        if err := a.alerts.Set(alert); err != nil {
            level.Error(a.logger).Log("msg", "error on set alert", "err", err)
            continue
        }
        ...
    }
    return nil
}
// store/store.go

type Alerts struct {
    sync.Mutex
    c  map[model.Fingerprint]*types.Alert
    cb func([]*types.Alert)
}

func (a *Alerts) Set(alert *types.Alert) error {
    a.Lock()
    defer a.Unlock()

    a.c[alert.Fingerprint()] = alert
    return nil
}

最终,API收到的alerts数据,被放入了mem.Alerts对象中的store.Alerts对象内,保存在内存中。

二.Dispatcher订阅alerts

Dispatcher订阅了mem.Alerts的Subscribe()接口,并在内部通过run()函数处理Subscribe的aLert。

// dispatch/dispatch.go

func (d *Dispatcher) Run() {
    ...
    d.run(d.alerts.Subscribe())
    ...
}

先看一下mem.Alerts的Subscribe()接口:

  • 首先,得到store.Alerts中的所有告警;
  • 然后,将告警发送到chan中;
  • 最后,包装chan到Iterator中返回;
// provider/mem/mem.go

func (a *Alerts) Subscribe() provider.AlertIterator {
    ...
    var (
        done   = make(chan struct{})
        alerts = a.alerts.List()
        ch     = make(chan *types.Alert, max(len(alerts), alertChannelLength))
    )
    for _, a := range alerts {
        ch <- a
    }
    ...
    return provider.NewAlertIterator(ch, done, nil)
}

再看下Dispatcher如何读取并处理alerts:

  • 读取alerts是通过Iterator.Next()进行的,实际就是接收chan中的内容;
  • 处理alerts是通过d.processAlert()进行的;
// dispatch/dispatch.go

func (d *Dispatcher) run(it provider.AlertIterator) {
    ...
    for {
        select {
        case alert, ok := <-it.Next():    // 读取
            ....
            now := time.Now()
            for _, r := range d.route.Match(alert.Labels) {
                d.processAlert(alert, r)        // 处理
            }
        ...
        }
    }
}

d.processAlert()的过程比较复杂,它使用了aggrGroup对象:

// dispatch/dispatch.go

func (d *Dispatcher) processAlert(alert *types.Alert, route *Route) {
    ...
    ag = newAggrGroup(d.ctx, groupLabels, route, d.timeout, d.logger)
    ag.insert(alert)


    go ag.run(func(ctx context.Context, alerts ...*types.Alert) bool {
        _, _, err := d.stage.Exec(ctx, d.logger, alerts...)
        ...
        return err == nil
    })    
}

aggrGroup对象,使用d.stage.Exec()将告警分发给notify模块:

  • d.stage对象,实际就是notify的pipeline,在main中初始化;
// cmd/alertmanager/main.go

func run() int {
    ...
    pipeline := pipelineBuilder.New(
        receivers,
        waitFunc,
        inhibitor,
        silencer,
        timeIntervals,
        notificationLog,
        pipelinePeer,
    )
    disp = dispatch.NewDispatcher(alerts, routes, pipeline, marker, timeoutFunc, nil, logger, dispMetrics)
    ...
}

三.Notify的pipeline

在Notify的pipeline中:

  • 首先,先进行GossipSettle、inhibitor、silencer等操作;

    • 这里面的每个Stage,若其中一个失败,则直接返回err;
  • 然后,针对每个receiver,再进行Wait、Dedupe、Retry、SetNotifies操作;

    • 这里面的每个Stage,若其中一个失败,则直接返回err;
// notify/notify.go

func (pb *PipelineBuilder) New(
    receivers map[string][]Integration,
    wait func() time.Duration,
    inhibitor *inhibit.Inhibitor,
    silencer *silence.Silencer,
    times map[string][]timeinterval.TimeInterval,
    notificationLog NotificationLog,
    peer Peer,
) RoutingStage {
    rs := make(RoutingStage, len(receivers))

    ms := NewGossipSettleStage(peer)
    is := NewMuteStage(inhibitor)
    ss := NewMuteStage(silencer)
    tms := NewTimeMuteStage(times)
    tas := NewTimeActiveStage(times)

    for name := range receivers {
        st := createReceiverStage(name, receivers[name], wait, notificationLog, pb.metrics)
        rs[name] = MultiStage{ms, is, tas, tms, ss, st}
    }
    return rs
}
func createReceiverStage(
    name string,
    integrations []Integration,
    wait func() time.Duration,
    notificationLog NotificationLog,
    metrics *Metrics,
) Stage {
    var fs FanoutStage
    for i := range integrations {
        recv := &nflogpb.Receiver{
            GroupName:   name,
            Integration: integrations[i].Name(),
            Idx:         uint32(integrations[i].Index()),
        }
        var s MultiStage
        s = append(s, NewWaitStage(wait))
        s = append(s, NewDedupStage(&integrations[i], notificationLog, recv))
        s = append(s, NewRetryStage(integrations[i], name, metrics))
        s = append(s, NewSetNotifiesStage(notificationLog, recv))

        fs = append(fs, s)
    }
    return fs
}

具体的发送动作,是在RetryStage中进行的:

  • 各种发送方式,比如webhook,都是一种Integration,它们都实现了Notify()方法;
// notify/notify.go

func (r RetryStage) exec(ctx context.Context, l log.Logger, alerts ...*types.Alert) (context.Context, []*types.Alert, error) {
    ...
    b := backoff.NewExponentialBackOff()
    tick := backoff.NewTicker(b)
    for {
        select {
        case <-tick.C:
            retry, err := r.integration.Notify(ctx, sent...)      // 发送
            if err != nil {
                ...
                iErr = err
            } else {
                ...
                return ctx, alerts, nil
            }
        case <-ctx.Done():
            if iErr == nil {
                iErr = ctx.Err()
            }
            return ctx, nil, errors.Wrapf(iErr, "%s/%s: notify retry canceled after %d attempts", r.groupName, r.integration.String(), i)
        }
    }
}

四.Gossip的使用

Notify pipeline模块中的第一步,就是进行Gossip Settle,那么它是如何进行的呢?

可以看出,它进行了waitReady(),然后才继续:

// notify/notify.go

func (n *GossipSettleStage) Exec(ctx context.Context, _ log.Logger, alerts ...*types.Alert) (context.Context, []*types.Alert, error) {
    if n.peer != nil {
        if err := n.peer.WaitReady(ctx); err != nil {
            return ctx, nil, err
        }
    }
    return ctx, alerts, nil
}

集群版的alertmanager,在启动时,使用Peer.Settle(),检查集群是否ready:

// cmd/alertmanager/main.go

func run() {
    ...
    if peer != nil {
        err = peer.Join(
            *reconnectInterval,
            *peerReconnectTimeout,
        )
        ....
        go peer.Settle(ctx, *gossipInterval*10)
    }
    ...
}

Peer.Settle()使用hashcorp/memlist监测集群状态:

  • Settle()函数中,本次检测到的节点数量与上次检测到的节点数量相同,则认为本次检测ok;
  • Settle()函数中,连续检测3次都ok的话,认为集群处于稳定状态,可以工作了;
  • 与强一致的raft协议不同,Gossip协议中在集群处于稳定状态下,即使只有一个节点也可以工作;
// cluster/cluster.go

func (p *Peer) Settle(ctx context.Context, interval time.Duration) {
    const NumOkayRequired = 3
    nPeers := 0
    nOkay := 0
    ...
    for {
        select {
        case <-ctx.Done():
            close(p.readyc)
            return
        case <-time.After(interval):
        }
        ...
        n := len(p.Peers())        // 使用hashicorp/memlist进行监测
        if nOkay >= NumOkayRequired {
            break
        }
        if n == nPeers {
            nOkay++
        } else {
            nOkay = 0
        }
        nPeers = n
    }
    close(p.readyc)    // 监测OK
}
// cluster/cluster.go

func (p *Peer) WaitReady(ctx context.Context) error {
    select {
    case <-ctx.Done():
        return ctx.Err()
    case <-p.readyc:
        return nil
    }
}

Gossip是分布式的最终一致性协议,alertmanager使用的是hashicorp的memlist库实现。


a朋
63 声望39 粉丝