对事务工作接触了不少,这里完整的从基本概念,原理,分析,案列等等梳理下事务机制的底层逻辑;
事务机制的底层逻辑
事务的基本特性、机制及原理
百度百科定义
事务(Transaction),一般是指要做的或所做的事情。在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit)。事务通常由高级数据库操纵语言或编程语言(如SQL,C++或Java)书写的用户程序的执行所引起,并用形如begin transaction和end transaction语句(或函数调用)来界定。事务由事务开始(begin transaction)和事务结束(end transaction)之间执行的全体操作组成。
事务的几个特性
原子性(Atomicity)
原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,这和前面两篇博客介绍事务的功能是一样的概念,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。
一致性(Consistency)
一致性是指事务必须使数据库从一个一致性状态变换到另一个一致性状态,也就是说一个事务执行之前和执行之后都必须处于一致性状态。
拿转账来说,假设用户A和用户B两者的钱加起来一共是5000,那么不管A和B之间如何转账,转几次账,事务结束后两个用户的钱相加起来应该还得是5000,这就是事务的一致性。
隔离性(Isolation)
隔离性是当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。
即要达到这么一种效果:对于任意两个并发的事务T1和T2,在事务T1看来,T2要么在T1开始之前就已经结束,要么在T1结束之后才开始,这样每个事务都感觉不到有其他事务在并发地执行。
持久性(Durability)
持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。
例如我们在使用JDBC操作数据库时,在提交事务方法后,提示用户事务操作完成,当我们程序执行完成直到看到提示后,就可以认定事务以及正确提交,即使这时候数据库出现了问题,也必须要将我们的事务完全执行完成,否则就会造成我们看到提示事务处理完毕,但是数据库因为故障而没有执行事务的重大错误。
并行事务会引发什么问题?
4个事务特性的存在是必须要遵守的,如果隔离性不存在,并发事务会引发什么问题呢?
以常见的MYSQL为例,MySQL 服务端是允许多个客户端连接的,这意味着 MySQL 会出现同时处理多个事务的情况。
那么在同时处理多个事务的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题。
接下来,通过举例子给大家说明,这些问题是如何发生的。
脏读
如果一个事务「读到」了另一个「未提交事务修改过的数据」,就意味着发生了「脏读」现象。
举个栗子:
假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库中读取小林的余额数据,然后再执行更新操作,如果此时事务 A 还没有提交事务,而此时正好事务 B 也从数据库中读取小林的余额数据,那么事务 B 读取到的余额数据是刚才事务 A 更新后的数据,即使没有提交事务。
因为事务 A 是还没提交事务的,也就是它随时可能发生回滚操作,如果在上面这种情况事务 A 发生了回滚,那么事务 B 刚才得到的数据就是过期的数据,这种现象就被称为脏读。
不可重复读
在一个事务内多次读取同一个数据,如果出现前后两次读到的数据不一样的情况,就意味着发生了「不可重复读」现象。
举个栗子:
假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库中读取小林的余额数据,然后继续执行代码逻辑处理,在这过程中如果事务 B 更新了这条数据,并提交了事务,那么当事务 A 再次读取该数据时,就会发现前后两次读到的数据是不一致的,这种现象就被称为不可重复读。
幻读
在一个事务内多次查询某个符合查询条件的「记录数量」,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了「幻读」现象。
举个栗子:
假设有 A 和 B 这两个事务同时在处理,事务 A 先开始从数据库查询账户余额大于 100 万的记录,发现共有 5 条,然后事务 B 也按相同的搜索条件也是查询出了 5 条记录。
接下来,事务 A 插入了一条余额超过 100 万的账号,并提交了事务,此时数据库超过 100 万余额的账号个数就变为 6。
然后事务 B 再次查询账户余额大于 100 万的记录,此时查询到的记录数量有 6 条,发现和前一次读到的记录数量不一样了,就感觉发生了幻觉一样,这种现象就被称为幻读。
事务的隔离级别有哪些?
前面我们提到,当多个事务并发执行时可能会遇到「脏读、不可重复读、幻读」的现象,这些现象会对事务的一致性产生不同程序的影响。
- 脏读:读到其他事务未提交的数据;
- 不可重复读:前后读取的数据不一致;
- 幻读:前后读取的记录数量不一致。
这三个现象的严重性排序如下:
SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低,这四个隔离级别如下:
- 读未提交(*read uncommitted*),指一个事务还没提交时,它做的变更就能被其他事务看到;
- 读提交(*read committed*),指一个事务提交之后,它做的变更才能被其他事务看到;
- 可重复读(*repeatable read*),指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别;
- 串行化(*serializable* );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;
按隔离水平高低排序如下:
针对不同的隔离级别,并发事务时可能发生的现象也会不同。
也就是说:
- 在「读未提交」隔离级别下,可能发生脏读、不可重复读和幻读现象;
- 在「读提交」隔离级别下,可能发生不可重复读和幻读现象,但是不可能发生脏读现象;
- 在「可重复读」隔离级别下,可能发生幻读现象,但是不可能脏读和不可重复读现象;
- 在「串行化」隔离级别下,脏读、不可重复读和幻读现象都不可能会发生。
所以,要解决脏读现象,就要升级到「读提交」以上的隔离级别;要解决不可重复读现象,就要升级到「可重复读」的隔离级别,要解决幻读现象不建议将隔离级别升级到「串行化」。
不同的数据库厂商对 SQL 标准中规定的 4 种隔离级别的支持不一样,有的数据库只实现了其中几种隔离级别,我们讨论的 MySQL 虽然支持 4 种隔离级别,但是与SQL 标准中规定的各级隔离级别允许发生的现象却有些出入。
MySQL 在「可重复读」隔离级别下,可以很大程度上避免幻读现象的发生(注意是很大程度避免,并不是彻底避免),所以 MySQL 并不会使用「串行化」隔离级别来避免幻读现象的发生,因为使用「串行化」隔离级别会影响性能。
MySQL InnoDB 引擎的默认隔离级别虽然是「可重复读」,但是它很大程度上避免幻读现象
- 针对快照读(普通 select 语句),是通过 MVCC 方式解决了幻读,因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。
- 针对当前读(select ... for update 等语句),是通过 next-key lock(记录锁+间隙锁)方式解决了幻读,因为当执行 select ... for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。
接下来,举个具体的例子来说明这四种隔离级别,有一张账户余额表,里面有一条账户余额为 100 万的记录。然后有两个并发的事务,事务 A 只负责查询余额,事务 B 则会将我的余额改成 200 万,下面是按照时间顺序执行两个事务的行为:
在不同隔离级别下,事务 A 执行过程中查询到的余额可能会不同:
- 在「读未提交」隔离级别下,事务 B 修改余额后,虽然没有提交事务,但是此时的余额已经可以被事务 A 看见了,于是事务 A 中余额 V1 查询的值是 200 万,余额 V2、V3 自然也是 200 万了;
- 在「读提交」隔离级别下,事务 B 修改余额后,因为没有提交事务,所以事务 A 中余额 V1 的值还是 100 万,等事务 B 提交完后,最新的余额数据才能被事务 A 看见,因此额 V2、V3 都是 200 万;
- 在「可重复读」隔离级别下,事务 A 只能看见启动事务时的数据,所以余额 V1、余额 V2 的值都是 100 万,当事务 A 提交事务后,就能看见最新的余额数据了,所以余额 V3 的值是 200 万;
- 在「串行化」隔离级别下,事务 B 在执行将余额 100 万修改为 200 万时,由于此前事务 A 执行了读操作,这样就发生了读写冲突,于是就会被锁住,直到事务 A 提交后,事务 B 才可以继续执行,所以从 A 的角度看,余额 V1、V2 的值是 100 万,余额 V3 的值是 200万。
这四种隔离级别具体是如何实现的呢?
- 对于「读未提交」隔离级别的事务来说,因为可以读到未提交事务修改的数据,所以直接读取最新的数据就好了;
- 对于「串行化」隔离级别的事务来说,通过加读写锁的方式来避免并行访问;
- 对于「读提交」和「可重复读」隔离级别的事务来说,它们是通过 Read View 来实现的,它们的区别在于创建 Read View 的时机不同,大家可以把 Read View 理解成一个数据快照,就像相机拍照那样,定格某一时刻的风景。「读提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View,而「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View。
Read View 在 MVCC 里如何工作的?
上面提到过 Read View,我们经常会听到MVCC的解决方案,MVCC的意思用简单的话讲就是对数据库的任何修改的提交都不会直接覆盖之前的数据,而是产生一个新的版本与老版本共存,使得读取时可以完全不加锁。这样读某一个数据时,事务可以根据隔离级别选择要读取哪个版本的数据,过程中完全不需要加锁。
那Read View是怎么在MVCC里工作的?
我们需要了解两个知识:
- Read View 中四个字段作用;
- 聚簇索引记录中两个跟事务有关的隐藏列;
那 Read View 到底是个什么东西?
Read View 有四个重要的字段:
- m\_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务。
- min\_trx\_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m\_ids 的最小值。
- max\_trx\_id :这个并不是 m\_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;
- creator\_trx\_id :指的是创建该 Read View 的事务的事务 id。
知道了 Read View 的字段,我们还需要了解聚簇索引记录中的两个隐藏列。
假设在账户余额表插入一条小林余额为 100 万的记录,然后我把这两个隐藏列也画出来,该记录的整个示意图如下:
对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:
- trx\_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx\_id 隐藏列里;
- roll\_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。
在创建 Read View 后,我们可以将记录中的 trx\_id 划分这三种情况:
一个事务去访问记录的时候,除了自己的更新记录总是可见之外,还有这几种情况:
- 如果记录的 trx\_id 值小于 Read View 中的 min\_trx\_id 值,表示这个版本的记录是在创建 Read View 前已经提交的事务生成的,所以该版本的记录对当前事务可见。
- 如果记录的 trx\_id 值大于等于 Read View 中的 max\_trx\_id 值,表示这个版本的记录是在创建 Read View 后才启动的事务生成的,所以该版本的记录对当前事务不可见。
如果记录的 trx\_id 值在 Read View 的min\_trx\_id和max\_trx\_id之间,需要判断 trx\_id 是否在 m\_ids 列表中:
- 如果记录的 trx\_id 在 m\_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见。
- 如果记录的 trx\_id 不在 m\_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见。
所以这里完整理解下来,这种通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制)。
可重复读是如何工作的?
可重复读隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View。
假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,那这两个事务创建的 Read View 如下:
事务 A 和 事务 B 的 Read View 具体内容如下:
- 在事务 A 的 Read View 中,它的事务 id 是 51,由于它是第一个启动的事务,所以此时活跃事务的事务 id 列表就只有 51,活跃事务的事务 id 列表中最小的事务 id 是事务 A 本身,下一个事务 id 则是 52。
- 在事务 B 的 Read View 中,它的事务 id 是 52,由于事务 A 是活跃的,所以此时活跃事务的事务 id 列表是 51 和 52,活跃的事务 id 中最小的事务 id 是事务 A,下一个事务 id 应该是 53。
接着,在可重复读隔离级别下,事务 A 和事务 B 按顺序执行了以下操作:
- 事务 B 读取小林的账户余额记录,读到余额是 100 万;
- 事务 A 将小林的账户余额记录修改成 200 万,并没有提交事务;
- 事务 B 读取小林的账户余额记录,读到余额还是 100 万;
- 事务 A 提交事务;
- 事务 B 读取小林的账户余额记录,读到余额依然还是 100 万;
接下来,跟大家具体分析下。
事务 B 第一次读小林的账户余额记录,在找到记录后,它会先看这条记录的 trx\_id,此时发现 trx\_id 为 50,比事务 B 的 Read View 中的 min\_trx\_id 值(51)还小,这意味着修改这条记录的事务早就在事务 B 启动前提交过了,所以该版本的记录对事务 B 可见的,也就是事务 B 可以获取到这条记录。
接着,事务 A 通过 update 语句将这条记录修改了(还未提交事务),将小林的余额改成 200 万,这时 MySQL 会记录相应的 undo log,并以链表的方式串联起来,形成版本链,如下图:
你可以在上图的「记录的字段」看到,由于事务 A 修改了该记录,以前的记录就变成旧版本记录了,于是最新记录和旧版本记录通过链表的方式串起来,而且最新记录的 trx\_id 是事务 A 的事务 id(trx\_id = 51)。
然后事务 B 第二次去读取该记录,发现这条记录的 trx\_id 值为 51,在事务 B 的 Read View 的 min\_trx\_id 和 max\_trx\_id 之间,则需要判断 trx\_id 值是否在 m\_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录。而是沿着 undo log 链条往下找旧版本的记录,直到找到 trx\_id 「小于」事务 B 的 Read View 中的 min\_trx\_id 值的第一条记录,所以事务 B 能读取到的是 trx\_id 为 50 的记录,也就是小林余额是 100 万的这条记录。
最后,当事物 A 提交事务后,由于隔离级别时「可重复读」,所以事务 B 再次读取记录时,还是基于启动事务时创建的 Read View 来判断当前版本的记录是否可见。所以,即使事物 A 将小林余额修改为 200 万并提交了事务, 事务 B 第三次读取记录时,读到的记录都是小林余额是 100 万的这条记录。
就是通过这样的方式实现了,「可重复读」隔离级别下在事务期间读到的记录都是事务启动前的记录。
读提交是如何工作的?
读提交隔离级别是在每次读取数据时,都会生成一个新的 Read View。
也意味着,事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务。
那读提交隔离级别是怎么工作呢?我们还是以前面的例子来聊聊。
假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,接着按顺序执行了以下操作:
- 事务 B 读取数据(创建 Read View),小林的账户余额为 100 万;
- 事务 A 修改数据(还没提交事务),将小林的账户余额从 100 万修改成了 200 万;
- 事务 B 读取数据(创建 Read View),小林的账户余额为 100 万;
- 事务 A 提交事务;
- 事务 B 读取数据(创建 Read View),小林的账户余额为 200 万;
那具体怎么做到的呢?我们重点看事务 B 每次读取数据时创建的 Read View。前两次 事务 B 读取数据时创建的 Read View 如下图:
我们来分析下为什么事务 B 第二次读数据时,读不到事务 A (还未提交事务)修改的数据?
事务 B 在找到小林这条记录时,会看这条记录的 trx\_id 是 51,在事务 B 的 Read View 的 min\_trx\_id 和 max\_trx\_id 之间,接下来需要判断 trx\_id 值是否在 m\_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录。而是,沿着 undo log 链条往下找旧版本的记录,直到找到 trx\_id 「小于」事务 B 的 Read View 中的 min\_trx\_id 值的第一条记录,所以事务 B 能读取到的是 trx\_id 为 50 的记录,也就是小林余额是 100 万的这条记录。
我们来分析下为什么事务 A 提交后,事务 B 就可以读到事务 A 修改的数据?
在事务 A 提交后,由于隔离级别是「读提交」,所以事务 B 在每次读数据的时候,会重新创建 Read View,此时事务 B 第三次读取数据时创建的 Read View 如下:
事务 B 在找到小林这条记录时,会发现这条记录的 trx\_id 是 51,比事务 B 的 Read View 中的 min\_trx\_id 值(52)还小,这意味着修改这条记录的事务早就在创建 Read View 前提交过了,所以该版本的记录对事务 B 是可见的。
正是因为在读提交隔离级别下,事务每次读数据时都重新创建 Read View,那么在事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务。
事务的传播机制
之前看过,事务隔离级别描述的是纵向事务并发调用时的行为模式,而事务传播机制描述的是横向事务传递时的行为模式。如图:
为什么会有事务传播机制?
spring 对事务的控制,是使用 aop 切面实现的,我们不用关心事务的开始,提交 ,回滚,只需要在方法上加 @Transactional 注解,这时候就有问题了。
场景一: methodA方法调用了 methodB 方法,但两个方法都有事务,这个时候如果 methodB 方法异常,是让 methodB 方法提交,还是两个一起回滚?
场景二:methodA方法调用了 methodB 方法,但是只有 methodA 方法加了事务,是否把 methodB 也加入 methodA 的事务,如果 methodB 异常,是否回滚 methodA。场景三:methodA方法调用了 methodB 方法,两者都有事务,methodB 已经正常执行完,但 methodA异常,是否需要回滚 serviceB 的数据?
事务传播机制原理
原理方面,简单来说: Spring 事务传播行为是通过事务管理器来实现的。Spring 使用 AOP 代理封装了原始的方法调用,以此来管理事务的边界和行为。当方法被调用时,AOP 建立的拦截器会根据指定的传播属性来确定如何开启或者参与事务。
例如,如果传播属性是 REQUIRES_NEW
,Spring 事务管理器会先暂停当前的事务,然后创建一个新的事务。事务的实际处理是通过底层的事务管理器,如 JDBC DataSourceTransactionManager
或 JPA JpaTransactionManager
来完成的。这些事务管理器与具体的持久化技术相集成,并负责实际的事务资源(如数据库连接)的获取、事务的提交或回滚。
事务的传播特性给予开发者在设计应用时更大的灵活性,使得可以根据不同的业务逻辑选择最合适的事务管理策略。要实现这些事务传播特性,Spring 通常需要与底层数据库或JTA(Java Transaction API)事务管理器配合使用,以确保事务的正确传播和管理。
事务原理分析
通过注解切面,结合上面事务传播机制如何去管理控制事务的提交与回滚;
多数据源事务处理机制
业务场景往往可能会涉及到多数据源数据一致性问题,往往可能会涉及到多数据源的事务处理,业界也有很多方案,各有优缺点;
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。