头图

本文将介绍N皇后问题的五种解法,包括朴素回溯法、对称优化、标记优化、可用优化、位运算优化,对于每种解题思路,提供相应的非递归版代码实现,最后将对每种解法进行测试,横向对比每种解法的求解时间。

题目描述

N×N 格的国际象棋上摆放 N 个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法?

回溯法

解题思路

回溯法采用深度有限的搜索策略遍历问题的解空间树,可采用递归方式实现,也可采用非递归方式实现,由于递归方式理解起来较为简单,故本文各方法均不提供递归方式,只提供非递归方式。

代码实现

/**
 * N皇后问题:回溯法(所有下标均从1开始)
 * @param n 皇后的数量
 * @return 摆法的数量
 */
int queen(int n) {

    // 棋盘 当前放置哪个皇后 解的数量
    int q[n + 1], k = 1, res = 0;
    memset(q, 0, sizeof q);

    // 判断第k个皇后放置位置是否合适
    auto check = [&](int k) {
        for (int i = 1; i < k; ++i)
            // 同列、同斜线已存在皇后
            if (q[i] == q[k] || abs(q[i] - q[k]) == abs(i - k))return false;
        return true;
    };

    // 开始放置皇后
    while (k > 0) {
        // 第k个皇后尝试下一个位置
        q[k]++;
        // 寻找第k行的下一个可以放置的位置
        while (q[k] <= n && !check(k))q[k]++;
        // 已超过当前行的上限l,回溯,返回上一行
        if (q[k] > n)--k;
        // 如果放置完所有皇后,则记录结果,否则放置下一行
        else k == n ? res++ : q[++k] = 0;
    }
    return res;
}

时间复杂度:O(n^{n^n})

空间复杂度:O(n)

对称优化

解题思路

仔细观察N-皇后的解,发现一种方案可以通过“对称”得到另一种方案。以“左右对称”为例,当 N=5,限定第一行皇后在左边一半区域时,方案数为 6,如图 1 所示。

(N皇后的可行解存在七种对称关系,此处仅讨论左右对称。)

<p style="text-align:center;font-size:14px">图1</p>

通过“左右对称”可以获得另一方案,同时发现,后面有两种方案重复,去除重复方案后,剩下的刚好是 N=5 时的全部方案,如图 2 所示。

<p style="text-align:center;font-size:14px">图2</p>

N 为偶数时关于中间那条线对称,当 N 为奇数时关于中间那一列对称。利用左右对称可以使得工作量减少一半,为此,在放置皇后时,增加两条限制

  1. 第一行的皇后只放在左边一半区域,也即位置小于等于 (n+1)/2
  2. N 为奇数且第一行皇后刚好放在 (n+1)/2 位置(即中间)时,为避免重复,第二行皇后必须放在左边一半区域。

代码实现

/**
 * N皇后问题:对称优化(所有下标均从1开始)
 * @param n 皇后的数量
 * @return 摆法的数量
 */
int queen(int n) {

    // 特判
    if (n == 1)return 1;

    // 棋盘 当前放置哪个皇后 解的数量
    int q[n + 1], k = 1, res = 0;
    memset(q, 0, sizeof q);

    // 判断第k个皇后放置位置是否合适
    auto check = [&](int k) {
        for (int i = 1; i < k; ++i)
            // 同列、同斜线已存在皇后
            if (q[i] == q[k] || abs(q[i] - q[k]) == abs(i - k))return false;
        return true;
    };

    // 中点位置 当前行最多能放到第几列
    int m = (n + 1) >> 1, l;
    // n是否为奇数
    bool odd = n & 1;

    // 开始放置皇后
    while (k > 0) {
        // 第k个皇后尝试下一个位置
        q[k]++;
        // 第一行放置的皇后不能超过中点
        if (k == 1)l = m;
        // n为奇数且第一行放在中间时,第二行不能超过中间
        else if (k == 2 && odd && q[1] == m)l = m - 1;
        // 其它情况可以放到中点右边
        else l = n;
        // 寻找第k行的下一个可以放置的位置
        while (q[k] <= l && !check(k))q[k]++;
        // 已超过当前行的上限l,回溯,返回上一行
        if (q[k] > l)--k;
        // 如果放置完所有皇后,则记录结果,否则放置下一行
        else k == n ? res++ : q[++k] = 0;
    }
    
    return res << 1;
}

时间复杂度:O(n^{n^n})

空间复杂度:O(n)

标记优化

解题思路

对于棋盘单元坐标,有如下规律(图 2 为两个 4×4 的棋盘):

  1. 同一正斜线所占据的单元的横纵坐标之和相等。
  2. 同一反斜线所占据的单元的横纵坐标之差相等。

<p style="text-align:center;font-size:14px">图3</p>

由此,可以设置数组 LR,表示斜线的占有情况,从而可以做到快速判断某位置是否可以放置皇后。

L[i] 表示和为 i 的正斜线是否被占据,i 的范围为 [2,2N],故 0,1两个位置舍去不用。

R[i] 表示差为 i 的反斜线是否被占据,i 的范围为 [1-N,N-1],为避免负下标,对 i 作加 N 处理。

L[i] 中的 i 舍去 0,1 两个位置,R[i] 中的 iN 而不是加 N-1,都是为了减少计算量。

同时,再设置数组 YY[i] 表示第 i 列是否被占据,1≤i≤N。改用根据数组 L,R,Y 来判断某位置是否可以放置皇后,可减少大量判断。( Y[i] 中的 i 不从 0 开始是为了便于处理)。

此处统一约定,对于标志数组 L,R,Y,值为 1 表示占用,值为 0 表示未占用。以 L 为例,L[i]=1 表示正斜线 i 被占用。

代码实现

/**
 * N皇后问题:标记优化(所有下标均从1开始)
 * @param n 皇后的数量
 * @return 摆法的数量
 */
int queen(int n) {

    // 特判
    if (n == 1)return 1;

    // 棋盘 当前放置哪个皇后 解的数量
    int q[n + 1], k = 1, res = 0;
    memset(q, 0, sizeof q);

    // 标志数组
    int y[n + 1], l[2 * n + 1], r[2 * n];
    memset(y, 0, sizeof(y)), memset(l, 0, sizeof(l)), memset(r, 0, sizeof(r));

    // 中点位置、当前行最多能放到第几列
    int w = (n + 1) >> 1, e;
    // N是否为奇数
    bool odd = n & 1;

    // 开始求解
    while (k > 0) {

        // 当前行放置下一个位置前,把原来占有的位置释放
        if (q[k] != 0)
            y[q[k]] = l[k + q[k]] = r[k - q[k] + n] = 0;

        // 第k个皇后尝试下一个位置
        q[k]++;

        // 第一行放置的皇后不能超过中点
        if (k == 1)e = w;
        // n为奇数且第一行放在中间时,第二行不能超过中间
        else if (k == 2 && odd && q[1] == w)e = w - 1;
        // 其它情况可以放到中点右边
        else e = n;

        // 寻找第k行的下一个可以放置的位置
        while (q[k] <= e && (y[q[k]] || l[k + q[k]] || r[k - q[k] + n]))q[k]++;

        // 已超过当前行的上限E,回溯,返回上一行
        if (q[k] > e)--k;
        // 找到一个解
        else if (k == n) res++;
        else {
            // 标记所在的列、斜线为不可放置
            y[q[k]] = l[k + q[k]] = r[k - q[k] + n] = 1;
            // 放置下一行
            q[++k] = 0;
        }
    }

    return res << 1;
}

时间复杂度:O(n^n)

空间复杂度:O(n)

可用优化

解题思路

前面两种实现,总是从当前行的第一个位置开始尝试,即使当前行没有位置可以放置,也需尝试完当前行每一个位置,这显然是没有必要的。新增 next 数组,next[i] 表示位置 i 的下一个可用位置(可用列),next[0] 表示第一个可用位置,next[i]=0 表示 i 是最后一个可用位置,特别的,next[0]=0 表示无可用位置,此时需要回溯。既然已经知道哪些位置可用,那就不再需要数组 Y 来判断某列是否可用。

代码实现

/**
 * N皇后问题:可用优化(所有下标均从1开始)
 * @param n 皇后的数量
 * @return 摆法的数量
 */
int queen(int n) {

    // 特判
    if (n == 1)return 1;

    // 棋盘 当前放置哪个皇后 解的数量
    int q[n + 1], k = 1, res = 0;
    memset(q, 0, sizeof q);

    // 中点位置 当前行最多能放到第几列
    int w = (n + 1) >> 1, e;
    // n是否为奇数
    bool odd = n & 1;

    // 标志数组
    int nex[n + 1], l[2 * n + 1], r[2 * n];
    memset(l, 0, sizeof(l)), memset(r, 0, sizeof(r));

    // 建立可用列链表
    for (int i = nex[n] = 0; i < n; ++i) nex[i] = i + 1;

    // 当前节点 cur前驱 临时节点
    int cur, pre, t;

    // 开始求解
    while (k > 0) {

        // cur指向第一个可用位置
        pre = 0, cur = nex[pre];

        // 第一行放置的皇后不能超过中间
        if (k == 1)e = w;
        // N为奇数且第一行放在中间时,第二行不能超过中间
        else if (k == 2 && odd && q[1] == w)e = w - 1;
        // 其它情况超过中间
        else e = n;

        /**
         * 寻找第k行的下一个可以放置的位置
         * !l[k+cur]&&!r[k-cur+n]&&q[k]<=cur:cur需要满足的条件,q[k]<=cur保证当前行尝试的位置会“一直前进”
         * cur=0: 链表为空或者找到最后未发现满足条件的列
         * cur>e:cur已超过当前行设定的边界,即基础实现中添加的两个限制条件
         * cur&&cur<=E用以限定cur的边界
         */
        while (cur && cur <= e && (l[k + cur] || r[k - cur + n] || q[k] > cur))
            pre = cur, cur = nex[pre];

        // 放置当前行时,把当前行原先占有的位置释放
        if (q[k]) {

            // 恢复成放置原先位置前的状态
            t = nex[q[k]];
            nex[q[k]] = nex[t];
            nex[t] = q[k];

            // 保持pre为cur的前驱
            if (nex[q[k]] == cur)pre = q[k];

            // 标记所在斜线可放置
            l[k + q[k]] = r[k - q[k] + n] = 0;
        }

        // 未找到合适的列,回溯
        if (!cur || cur > e)k--;
            // 找到合适的列但当前行是最后一行,放完再回溯
        else if (k == n) {
            q[k] = cur;
            res++, k--;
        }
        // 找到合适的列但非最后一行,放完后放置下一行
        else {
            q[k] = cur;
            nex[pre] = nex[cur];                // cur已被占用,删除cur
            nex[cur] = pre;                     // 记录前驱,用以恢复到放置前的状态
            l[k + cur] = r[k - cur + n] = 1;    // 标记所在斜线不可放置
            q[++k] = 0;                         // 放置下一行
        }

    }

    return res << 1;
}

时间复杂度:O(n!)

空间复杂度:O(n)

位运算

解题思路

3×3 的棋盘为例,最左上角的左斜线记作第一条左斜线,最右上角的第一条右斜线记作第一条右斜线。为了便于叙述,以下涉及到的二进制均只有 n 位(棋盘大小),第几位是从左往右数。

将列、左斜线(/)、右斜线(\)的可用状态分别用二进制表示,1 表示占用,0 表示可用,以列为例,010 表示第 1,3 列可用,第 2 列占用。

将斜线状态转换为列状态,以左斜线为例,如下表所示

第1行第2行第3行
第1条左斜线100000000
第2条左斜线010100000
第3条左斜线001010100
第4条左斜线000001010
第5条左斜线000000001

(第 1 条左斜线,第 1 行)= 100 的解释为,若第 1 条左斜线不可用,对于第 1 行的影响是 100,即,第 1 列不能放置,第 2,3 列可以放置。

对于第 i 行而言,必须要放置一个皇后(放置不了就直接回溯了),放置完皇后,其对应左斜线状态必然不是 000,因为放置的这个皇后必然会导致某左斜线不可用,所以,假设第 i 行到第 i+1 行,左斜线状态状态由 A➡B,则 A 必定不为 000,在上表所有状态转换(由第 j 行到第 j+1)中,排除起始状态为 000 的转换,(i,j+1) 可由 (i,j) 左移一位得到。

同理可得,对于右斜线而言,(i,j+1) 可由 (i,j) 右移一位得到。

设考虑第 i 行时,列、左斜线、右斜线状态分别为 C,L,R,则

  • i 行可选的位置为 pos = ~(C | L | R) & ((1<<n)-1) 的二进制中 1 对应的列,假设选的是第 k 列,则记为 PP 的二进制中只有第 k 位为 1
  • 考虑第 i 行时,C = C|PL = (L|P)<<1R = (R|P)>>1

注意,C,L,R 需要始终保持只有 n 位有效,由于整数 int32 位,那么除开低 n 位,其余各位均需保持为 0

代码实现

/**
 * N皇后问题:位运算
 * @param n 皇后的数量
 * @return 摆法的数量
 */
int queen((int n) {
    int res = 0, mk = (1 << n) - 1, k = 1, pos, p;
    // 存放放置各行时的状态
    tuple<int, int, int, int> st[n + 2];
    // 第一行
    st[1] = {0, 0, 0, 0};
    while (k > 0) {
        /**
         * c表示列状态
         * l表示左斜线状态
         * r表示右斜线状态
         * m指示当前行哪些列已经尝试过了
         */
        auto [c, l, r, m] = st[k];
        // 当前行可放置的位置
        pos = ~(c | l | r | m) & mk;
        // 无可放置的位置则回溯
        if (!pos) {
            k--;
            continue;
        }
        // 取pos最低位的1
        p = pos & (-pos);
        // 记录当前行的位置p已尝试过
        st[k] = {c, l, r, m | p};

        // 状态传递,初始放置下一行时的状态,尝试放置下一行
        if (k < n) st[++k] = {c | p, (l | p) << 1, (r | p) >> 1, 0};
        // 放置完毕则记录答案并回溯
        else res++, k--;
    }
    return res;
}

时间复杂度:O(n!)

空间复杂度:O(n)

统计与分析

五种解法均采用非递归实现,为了直观比较五种解法的效率,分别统计五种解法在 N=10N=18 的情况下的求解时间(单位为毫秒),测试结果如下表所示。

解法\N1011121314151161718
回溯法524137791519335500256075200507716683871
对称优化3137546930372081415229911647809376002
标记优化04241358095206353732537021912227
可用优化1316895263334224201583741179343
位运算52512870341442586617714312631029281287

根据上表数据制作散点图,如图 4 所示:

<p style="text-align:center;font-size:14px">图4 N皇后问题非递归求解时间散点图</p>

从回溯法到可用优化,通过逐步优化求解方式,求解时间也显著减少。位运算方式与对称优化方式的求解时间相当,N <18 时,位运算的求解时间大于对称优化,但是,由数据可以预见,当 N≥18 时,位运算的求解时间将小于对称优化。

END

文章文档:公众号 字节幺零二四 回复关键字可获取本文文档。


字节幺零二四
9 声望5 粉丝

talk is cheap, show me you code!