1. 内容提取

通过 YOLO 提取需要识别的区域

1.1 安装ultralytics

  1. 创建虚拟环境(可选)

    # 创建虚拟环境
    python -m venv ultralytics-env
    
    # 激活虚拟环境
    ### 激活虚拟环境将更改 shell 的提示以显示您正在使用的虚拟环境,并修改环境,以便运行时 python可以获得特定版本和安装的 Python。例如:
    source ultralytics-env/bin/activate
    
    # 显示虚拟环境中安装的所有软件包:
    python -m pip list
    
    # 停用/退出虚拟环境
    # deactivate
  2. 配置阿里云加速

    # 配置 Pip 清华镜像源,--user参数表示当前用户生效
    pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple --user
    pip3 config set install.trusted-host pypi.tuna.tsinghua.edu.cn --user
    
    # 或者aliyu源: https://mirrors.aliyun.com/pypi/simple
    # 国外可以使用官方源: https://pypi.org/simple
    
    
    # 查看 Pip 所有配置项, 确认代理配置成功
    pip3 config list --user
  3. 安装ultralytics

    # Install the ultralytics package from PyPI
    pip install ultralytics
    
    # 导出依赖项
    # pip freeze > requirements.txt
    # 安装依赖项
    # pip install -r requirements.txt

    官方文档: https://docs.ultralytics.com/quickstart/

1.2 编写脚本

cut.py

from ultralytics import YOLO

# Load a model
model = YOLO("best.pt")  # pretrained YOLOv8n model

# Run batched inference on a list of images
modelDir = "Downloads/"

# Run inference on 'bus.jpeg' with arguments
results = model.model(modelDir + "bus.jpeg", save=True, imgsz=96)

# Process results list
for result in results:
    boxes = result.boxes  # Boxes object for bounding box outputs
    masks = result.masks  # Masks object for segmentation masks outputs
    keypoints = result.keypoints  # Keypoints object for pose outputs
    probs = result.probs  # Probs object for classification outputs
    obb = result.obb  # Oriented boxes object for OBB outputs
    result.show()  # display to screen
    result.save(filename="result.jpg")  # save to disk
    result.save_txt(txt_file="result.txt")
    print(result.tojson())

执行检测
python cut.py

2. OCR识别

pip install paddlepaddle-gpu


YYGP
25 声望11 粉丝

写BUG


引用和评论

0 条评论