湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。

为便于用户快速入门,我们将通过系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 Hudi、Iceberg、Paimon、OSS、Delta Lake、Kudu、BigQuery 等。目前,我们已经发布了 Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一),通过此文你可了解到在 Docker 环境下,如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境。

本文我们将再续前言,为大家介绍 Lakehouse 使用手册(二)之 Apache Doris + Apache Paimon 搭建指南。

Apache Doris + Apache Paimon

Apache Paimon 是一种数据湖格式,并创新性地将数据湖格式和 LSM 结构的优势相结合,成功将高效的实时流更新能力引入数据湖架构中,这使得 Paimon 能够实现数据的高效管理和实时分析,为构建实时湖仓架构提供了强大的支撑。

为了充分发挥 Paimon 的能力,提高对 Paimon 数据的查询效率,Apache Doris 对 Paimon 的多项最新特性提供了原生支持:

  • 支持 Hive Metastore、FileSystem 等多种类型的 Paimon Catalog。
  • 原生支持 Paimon 0.6 版本发布的 Primary Key Table Read Optimized 功能。
  • 原生支持 Paimon 0.8 版本发布的 Primary Key Table Deletion Vector 功能。

基于 Apache Doris 的高性能查询引擎和 Apache Paimon 高效的实时流更新能力,用户可以实现:

  • 数据实时入湖: 借助 Paimon 的 LSM-Tree 模型,数据入湖的时效性可以降低到分钟级;同时,Paimon 支持包括聚合、去重、部分列更新在内的多种数据更新能力,使得数据流动更加灵活高效。
  • 高性能数据处理分析: Paimon 所提供的 Append Only Table、Read Optimized、Deletion Vector 等技术,可与 Doris 强大的查询引擎对接,实现湖上数据的快速查询及分析响应。

未来 Apache Doris 将会逐步支持包括 Time Travel、增量数据读取在内的 Apache Paimon 更多高级特性,共同构建统一、高性能、实时的湖仓平台。

本文将会再 Docker 环境中,为读者讲解如何快速搭建 Apache Doris + Apache Paimon 测试 & 演示环境,并展示各功能的使用操作。

使用指南

本文涉及脚本&代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/iceberg\_and\_paimon

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

Docker Compose 部署组件及版本号.png

Apache Doris 2.1.5 为全新发布:| 下载地址Release Notes

02 环境部署

1. 启动所有组件

bash ./start_all.sh

2. 启动后,可以使用如下脚本,登陆 Flink 命令行或 Doris 命令行:

bash ./start_flink_client.sh
bash ./start_doris_client.sh

03 数据准备

首先登陆 Flink 命令行后,可以看到一张预构建的表。表中已经包含一些数据,我们可以通过 Flink SQL 进行查看。

Flink SQL> use paimon.db_paimon;
[INFO] Execute statement succeed.

Flink SQL> show tables;
+------------+
| table name |
+------------+
|   customer |
+------------+
1 row in set

Flink SQL> show create table customer;
+------------------------------------------------------------------------+
|                                                                 result |
+------------------------------------------------------------------------+
| CREATE TABLE `paimon`.`db_paimon`.`customer` (
  `c_custkey` INT NOT NULL,
  `c_name` VARCHAR(25),
  `c_address` VARCHAR(40),
  `c_nationkey` INT NOT NULL,
  `c_phone` CHAR(15),
  `c_acctbal` DECIMAL(12, 2),
  `c_mktsegment` CHAR(10),
  `c_comment` VARCHAR(117),
  CONSTRAINT `PK_c_custkey_c_nationkey` PRIMARY KEY (`c_custkey`, `c_nationkey`) NOT ENFORCED
) PARTITIONED BY (`c_nationkey`)
WITH (
  'bucket' = '1',
  'path' = 's3://warehouse/wh/db_paimon.db/customer',
  'deletion-vectors.enabled' = 'true'
)
 |
+-------------------------------------------------------------------------+
1 row in set

Flink SQL> desc customer;
+--------------+----------------+-------+-----------------------------+--------+-----------+
|         name |           type |  null |                         key | extras | watermark |
+--------------+----------------+-------+-----------------------------+--------+-----------+
|    c_custkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|       c_name |    VARCHAR(25) |  TRUE |                             |        |           |
|    c_address |    VARCHAR(40) |  TRUE |                             |        |           |
|  c_nationkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|      c_phone |       CHAR(15) |  TRUE |                             |        |           |
|    c_acctbal | DECIMAL(12, 2) |  TRUE |                             |        |           |
| c_mktsegment |       CHAR(10) |  TRUE |                             |        |           |
|    c_comment |   VARCHAR(117) |  TRUE |                             |        |           |
+--------------+----------------+-------+-----------------------------+--------+-----------+
8 rows in set

Flink SQL> select * from customer order by c_custkey limit 4;
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
| c_custkey |             c_name |                      c_address | c_nationkey |         c_phone | c_acctbal | c_mktsegment |                      c_comment |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
|         1 | Customer#000000001 |              IVhzIApeRb ot,c,E |          15 | 25-989-741-2988 |    711.56 |     BUILDING | to the even, regular platel... |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak |          13 | 23-768-687-3665 |    121.65 |   AUTOMOBILE | l accounts. blithely ironic... |
|         3 | Customer#000000003 |                   MG9kdTD2WBHm |           1 | 11-719-748-3364 |   7498.12 |   AUTOMOBILE |  deposits eat slyly ironic,... |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tl... |          15 | 25-430-914-2194 |   3471.53 |     BUILDING | cial ideas. final, furious ... |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
4 rows in set

04 数据查询

如下所示,Doris 集群中已经创建了名为paimon 的 Catalog(可通过 SHOW CATALOGS 查看)。以下为该 Catalog 的创建语句:

-- 已创建,无需执行
CREATE CATALOG `paimon` PROPERTIES (
    "type" = "paimon",
    "warehouse" = "s3://warehouse/wh/",
    "s3.endpoint"="http://minio:9000",
    "s3.access_key"="admin",
    "s3.secret_key"="password",
    "s3.region"="us-east-1"
);

你可登录到 Doris 中查询 Paimon 的数据:

mysql> use paimon.db_paimon;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+---------------------+
| Tables_in_db_paimon |
+---------------------+
| customer            |
+---------------------+
1 row in set (0.00 sec)

mysql> select * from customer order by c_custkey limit 4;
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address                             | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         1 | Customer#000000001 | IVhzIApeRb ot,c,E                     |          15 | 25-989-741-2988 |    711.56 | BUILDING     | to the even, regular platelets. regular, ironic epitaphs nag e                                         |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak        |          13 | 23-768-687-3665 |    121.65 | AUTOMOBILE   | l accounts. blithely ironic theodolites integrate boldly: caref                                        |
|         3 | Customer#000000003 | MG9kdTD2WBHm                          |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J |          15 | 25-430-914-2194 |   3471.53 | BUILDING     | cial ideas. final, furious requests across the e                                                       |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
4 rows in set (1.89 sec)

05 读取增量数据

我们可以通过 Flink SQL 更新 Paimon 表中的数据:

Flink SQL> update customer set c_address='c_address_update' where c_nationkey = 1;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: ff838b7b778a94396b332b0d93c8f7ac

等 Flink SQL 执行完毕后,在 Doris 中可直接查看到最新的数据:

mysql> select * from customer where c_nationkey=1 limit 2;
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address       | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         3 | Customer#000000003 | c_address_update |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|       513 | Customer#000000513 | c_address_update |           1 | 11-861-303-6887 |    955.37 | HOUSEHOLD    | press along the quickly regular instructions. regular requests against the carefully ironic s          |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
2 rows in set (0.19 sec)

Benchmark

我们在 Paimon(0.8)版本的 TPCDS 1000 数据集上进行了简单的测试,分别使用了 Apache Doris 2.1.5 版本和 Trino 422 版本,均开启 Primary Key Table Read Optimized 功能。

Doris vs Trino Benchmark.png

从测试结果可以看到,Doris 在标准静态测试集上的平均查询性能是 Trino 的 3 -5 倍,后续我们将针对 Deletion Vector 进行优化,进一步提升真实业务场景下的查询效率。

查询优化

对于基线数据来说,Apache Paimon 在 0.6 版本中引入 Primary Key Table Read Optimized 功能后,使得查询引擎可以直接访问底层的 Parquet/ORC 文件,大幅提升了基线数据的读取效率。对于尚未合并的增量数据( INSERT、UPDATE 或 DELETE 所产生的数据增量)来说,可以通过 Merge-on-Read 的方式进行读取。此外,Paimon 在 0.8 版本中还引入的 Deletion Vector 功能,能够进一步提升查询引擎对增量数据的读取效率。

Apache Doris 支持通过原生的 Reader 读取 Deletion Vector 并进行 Merge on Read,我们通过 Doris 的 EXPLAIN 语句,来演示在一个查询中,基线数据和增量数据的查询方式。

mysql> explain verbose select * from customer where c_nationkey < 3;
+------------------------------------------------------------------------------------------------------------------------------------------------+
| Explain String(Nereids Planner)                                                                                                                |
+------------------------------------------------------------------------------------------------------------------------------------------------+
| ...............                                                                                                                                |
|                                                                                                                                                |
|   0:VPAIMON_SCAN_NODE(68)                                                                                                                      |
|      table: customer                                                                                                                           |
|      predicates: (c_nationkey[#3] < 3)                                                                                                         |
|      inputSplitNum=4, totalFileSize=238324, scanRanges=4                                                                                       |
|      partition=3/0                                                                                                                             |
|      backends:                                                                                                                                 |
|        10002                                                                                                                                   |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-15cee5b7-1bd7-42ca-9314-56d92c62c03b-0.orc start: 0 length: 66600 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-5d50255a-2215-4010-b976-d5dc656f3444-0.orc start: 0 length: 44501 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=2/bucket-0/data-e98fb7ef-ec2b-4ad5-a496-713cb9481d56-0.orc start: 0 length: 64059 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=0/bucket-0/data-431be05d-50fa-401f-9680-d646757d0f95-0.orc start: 0 length: 63164 |
|      cardinality=18751, numNodes=1                                                                                                             |
|      pushdown agg=NONE                                                                                                                         |
|      paimonNativeReadSplits=4/4                                                                                                                |
|      PaimonSplitStats:                                                                                                                         |
|        SplitStat [type=NATIVE, rowCount=1542, rawFileConvertable=true, hasDeletionVector=true]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|      tuple ids: 0
| ...............                                                                                                           |                                                                                                  |
+------------------------------------------------------------------------------------------------------------------------------------------------+
67 rows in set (0.23 sec)

可以看到,对于刚才通过 Flink SQL 更新的表,包含 4 个分片,并且全部分片都可以通过 Native Reader 进行访问(paimonNativeReadSplits=4/4)。并且第一个分片的hasDeletionVector的属性为 true,表示该分片有对应的 Deletion Vector,读取时会根据 Deletion Vector 进行数据过滤。

结束语

以上是基于 Apache Doris 与 Apache Paimon 快速搭建测试 / 演示环境的详细指南,后续我们还将陆续推出 Apache Doris 与各类主流数据湖格式及存储系统构建湖仓一体架构的系列指南,包括 Iceberg、OSS、Delta Lake 等,欢迎持续关注。


SelectDB技术团队
34 声望26 粉丝

现代化实时数据仓库 SelectDB,支持大规模实时数据上的极速查询分析。