头图

1.简介

高清地图是自动驾驶系统的重要组件,提供精确的驾驶环境信息和道路语义信息。传统离线地图构建方法成本高,维护复杂,使得依赖车载传感器的实时感知建图成为新趋势。早期实时建图方法存在局限性,如处理复杂地图元素的能力不足、缺乏实例级信息等,在实时性和后处理复杂度上存在挑战。

为了解决这些问题,基于 Transformer 的 MapTR 模型被提出,它采用端到端结构,仅使用图像数据就能实现高精度建图,同时保证实时性和鲁棒性。MapTRv2 在此基础上增加了新特性,进一步提升了建图精度和性能。

地平线面向智驾场景推出的 征程6 系列(J6)芯片,在提供强大算力的同时带来了极致的性价比,征程6 芯片对于 Transformer 模型的高效支持助力了 MapTR 系列模型的端侧部署。本文将详细介绍地平线算法工具链在 征程6 芯片部署 MapTR 系列模型所做的优化以及模型端侧的表现。性能精度指标模型配置:模型数据集
图片

2.性能精度表现:

图片
预测的地图元素:“divider”,“ped_crossing”,“boundary”;默认使用 Lidar 坐标系,和公版保持一致。同时适配 ego 坐标系;量化配置 TopK:前 K 个量化敏感的算子。

3.公版模型介绍

MapTR

image.png
MapTR 模型的默认输入是车载摄像头采集到的 6 张相同分辨率的环视图像,使用 nuScenes 数据集,同时也支持拓展为多模态输入例如雷达点云。模型输出是矢量化的地图元素信息,其中地图元素为人行横道、车道分隔线和道路边界 3 种。模型主体采用 encoder-decoder 的端到端结构:

  • Map Encoder 通过 CNN Backbone+BEV Encoder 负责提取 2D 图像特征并转换到统一的 BEV 视角。MapTR-nano 默认使用 ResNet18 作为 Backbone,MapTR-tiny 默认使用 ResNet50。MapTR 兼容多种 BEV Encoder 实现方式例如 GKT、LSS 和 IPM 等并且表现稳定,鉴于 GKT 的部署高效性以及在消融实验中的精度表现更好,公版 MapTR 使用 GKT 作为默认 BEV Encoder 实现方式。
  • Map Decoder 采用 Hierarchical Query Embedding Scheme,即从 point-level(位置)和 instance-level(轮廓)显式地编码地图元素,point-level queries 被所有 instances 共享并融合进 instance-level queries 从而生成 hierarchical queries,hierarchical queries 经过级联的 decoder layers(默认是 6 层)不断更新。每个 decoder layer 首先使用多头自注意力(MHSA)做 inter-instance 和 intra-instance 的信息交互,接着会使用 Deformable Attention 来与 Map Encoder 输出的 BEV 特征做信息交互。point-level 的信息被所有 instance 共享,所以对于每个 instance 而言,映射到 BEV 空间的多个参考点 reference points 是灵活且动态分布的,这对于提取 long-range context information 预测随机形状的地图元素是有益的。MapTR Head 由分类分支和回归分支构成。分类分支预测 instances 的类别,回归分支预测 points 集合的位置。Head 输出的预测值和真值 GT 之间采用 Hierarchical Bipartite Matching 实现监督学习,分为 Instance-level Matching 和 Point-level Matching,因此损失函数为三个部分的加权和:分类 Classification Loss、点对点位置 Point2point Loss 和连接边方向 Edge Direction Loss。

MapTRv2

image.png
MapTRv2 在 MapTR 的基础上增加了新的特性:

  1. 针对层次化 query,引入解耦自注意力,极大地减少了计算量和显存消耗;对于和输入特征交互的 cross-attention 部分,则引入了 BEV、PV 和 BEV+PV 三种变体;
  2. 引入辅助 one-to-many 集合预测分支,增加了正样本数,加速了训练收敛;
  3. 引入辅助 dense supervision,引入深度估计预测头、PV 和 BEV 视角下的分割头,进一步提升模型精度。由于引入深度信息做监督学习,为了显式地提取深度信息,公版 MapTRv2 选择基于 LSS 的 BEVPoolv2 来作为 BEV 视角转换方式;
  4. 引入新的地图元素车道中心线(centerline);
  5. 增加 3D 地图元素预测能力,并提供 Argoverse2 数据集上的指标。

4.地平线部署说明

地平线参考算法使用流程请参考附录《TCJ6007-J6 参考算法使用指南》;
对应高效模型设计建议请参考附录《TCJ6005-J6 平台算法设计建议》

模型对应的代码路径:

模块代码路径
Config{oe_path}/samples/ai_toolchain/horizon_model_train_sample/scripts/configs/map/maptrv2_resnet50_bevformer_nuscenes.py
Model Structure/usr/local/lib/python3.10/dist-packages/hat/models/structures/maptr/maptrv2.py: class MapTRv2(nn.Module)
Backbone/usr/local/lib/python3.10/dist-packages/hat/models/backbones/resnet.py: class ResNet50(ResNet)
Neck/usr/local/lib/python3.10/dist-packages/hat/models/necks/fpn.py: class FPN(nn.Module)
View Transformer/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/bevformer/view_transformer.py: class SingleBevFormerViewTransformer(BevFormerViewTransformer)其中包含的BEV Encoder模块:/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/bevformer/encoder.py: class SingleBEVFormerEncoder(BEVFormerEncoder)
BEV Decoder/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/maptr/decoderv2.py: class MapTRPerceptionDecoderv2(nn.Module)其中具体包含的BEV Decoder模块:/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/maptr/decoder.py: class MapTRDecoder(nn.Module)
Criterion/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/maptr/criterion.py: class MapTRCriterion(nn.Module)其中的Assigner模块:/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/maptr/assigner.py: class MapTRAssigner(nn.Module)
Post Process/usr/local/lib/python3.10/dist-packages/hat/models/task_modules/maptr/postprocess.py: class MapTRPostProcess(nn.Module)

性能优化

Neck

Neck 部分采用了地平线内部实现的 FPN,相比公版 FPN 实现,在 征程6 平台上性能更加友好。

View Transformer

地平线参考算法版本将基于 LSS 的视角转换方式替换为 Bevformer 的 View Transformer 部分。
  1. BEV Grid 尺寸:对于 Dense BEV 而言,BEV Grid 的尺寸大小实际地影响模型性能。征程6 平台增强了带宽能力,但仍需注意 BEV 网格过大导致访存压力过大而对性能带来负面影响,建议考虑实际部署情况选择合适的 BEV 网格大小来设计模型。相比公版 MapTRv2 模型使用 200x100 的网格,地平线部署模型使用 100x50 的网格来实现性能和精度的平衡。
  2. BEV 特征编码:
  3. 默认 prev_bev 由 cur_bev 改为全 0;
  4. 取消 can_bus 信息的使用,前一帧 bev 特征 prev_bev 和当前帧 cur_bev 的对齐方式由使用 can_bus 信息正向校准改为使用 GridSample 算子反向采样校准;
  5. 取消了 bev_query 初始化部分和 can_bus 的融合;
  6. 取消了公版的 TemporalSelfAttention,改为 HorizonMSDeformableAttention,提升速度。
# 公版模型
class MapTRPerceptionTransformer(BaseModule):
    ...
    def attn_bev_encode(...):
        ...
        if prev_bev is not None:
            if prev_bev.shape[1] == bev_h * bev_w:
                prev_bev = prev_bev.permute(1, 0, 2)
            if self.rotate_prev_bev:
                for i in range(bs):
                    # num_prev_bev = prev_bev.size(1)
                    rotation_angle = kwargs['img_metas'][i]['can_bus'][-1]
                    tmp_prev_bev = prev_bev[:, i].reshape(
                        bev_h, bev_w, -1).permute(2, 0, 1)
                    tmp_prev_bev = rotate(tmp_prev_bev, rotation_angle,
                                          center=self.rotate_center)
                    tmp_prev_bev = tmp_prev_bev.permute(1, 2, 0).reshape(
                        bev_h * bev_w, 1, -1)
                    prev_bev[:, i] = tmp_prev_bev[:, 0]
        
        # add can bus signals
        can_bus = bev_queries.new_tensor(
            [each['can_bus'] for each in kwargs['img_metas']])  # [:, :]
        can_bus = self.can_bus_mlp(can_bus[:, :self.len_can_bus])[None, :, :]
        bev_queries = bev_queries + can_bus * self.use_can_bus
        ...

# 地平线参考算法
class BevFormerViewTransformer(nn.Module):
    ...
    def __init__(...):
        ...
        self.prev_frame_info = {
            "prev_bev": None,
            "scene_token": None,
            "ego2global": None,
        }
        ...
    def get_prev_bev(...):
        if idx == self.queue_length - 1 and self.queue_length != 1:
            prev_bev = torch.zeros(
                (bs, self.bev_h * self.bev_w, self.embed_dims),
                dtype=torch.float32,
                device=device,
            )
            ...
        else:
            prev_bev = self.prev_frame_info["prev_bev"]
            if prev_bev is None:
                prev_bev = torch.zeros(
                    (bs, self.bev_h * self.bev_w, self.embed_dims),
                    dtype=torch.float32,
                    device=device,
                ) # 对应改动2.a
                ...
    def bev_encoder(...):
        ...
        tmp_prev_bev = prev_bev.reshape(
            bs, self.bev_h, self.bev_w, self.embed_dims
        ).permute(0, 3, 1, 2)
        prev_bev = F.grid_sample(
            tmp_prev_bev, norm_coords, "bilinear", "zeros", True
        ) # 对应改动2.b
        ...
class SingleBevFormerViewTransformer(BevFormerViewTransformer):
    ...
    def get_bev_embed(...):
        ...
        bev_query = self.bev_embedding.weight
        bev_query = bev_query.unsqueeze(1).repeat(1, bs, 1) # 对应改动2.c
        ...
# 公版模型Config
model = dict(
    ...
    pts_bbox_head=dict(
        type='MapTRHead',
        ...
        transformer=dict(
            type='MapTRPerceptionTransformer',
            ...
            encoder=dict(
                type='BEVFormerEncoder',
                ...
                transformerlayers=dict(
                    type='BEVFormerLayer',
                    attn_cfgs=[
                        dict(
                            type='TemporalSelfAttention',
                            embed_dims=_dim_,
                            num_levels=1),
                            ...
                    ]
                )
            )
        )
    )
)
# 地平线参考算法Config
model = dict(
    ...
    view_transformer=dict(
        type="SingleBevFormerViewTransformer",
        ...
        encoder=dict(
            type="SingleBEVFormerEncoder",
            ...
            encoder_layer=dict(
                type="SingleBEVFormerEncoderLayer",
                ...
                selfattention=dict(
                    type="HorizonMSDeformableAttention", # 对应改动2.d
                    ...
                ),
            )
        )
    )
)

Attention

模型中用到的 attention 操作均使用地平线提供的算子,相比 PyTorch 提供的公版算子,地平线 attention 算子在保持算子逻辑等价的同时在效率上进行了优化

from hat.models.task_modules.bevformer.attention import (
    HorizonMSDeformableAttention,
    HorizonMSDeformableAttention3D,
    HorizonSpatialCrossAttention,
)

精度优化

1.量化精度对模型中量化敏感的 Top30 个算子采用 Int16 精度量化:

# Config文件
if os.path.exists(pts_path):
    pts_table = torch.load(pts_path)
    cali_qconfig_setter = (
        sensitive_op_calibration_8bit_weight_16bit_act_qconfig_setter(
            pts_table,
            topk=30,
            ratio=None,
        ),
        default_calibration_qconfig_setter,
    )
    qat_qconfig_setter = (
        sensitive_op_qat_8bit_weight_16bit_fixed_act_qconfig_setter(
            pts_table,
            topk=30,
            ratio=None,
        ),
        default_qat_fixed_act_qconfig_setter,
    )

2.QAT 训练采用固定较小的 learning rate 来 fine-tune,这里固定也即取消 LrUpdater Callback 的使用,配置如下:

`# Config文件
float_lr = 6e-4
qat_lr = 1e-6`

3.取消了公版模型 MapTRHead 中对于量化不友好的 inverse_sigmoid 操作;此外部署模型取消了 MapTRHead 中 reg_branches 输出和 reference 相加后再 sigmoid 的操作(该操作可以转移到部署后处理中完成):

# 公版模型
class MapTRHead(DETRHead):
    ...
    def forward(...):
        ...
        for lvl in range(hs.shape[0]):
            if lvl == 0:
                # import pdb;pdb.set_trace()
                reference = init_reference
            else:
                reference = inter_references[lvl - 1]
            reference = inverse_sigmoid(reference)
            ...
            tmp = self.reg_branches[lvl](...)
            tmp[..., 0:2] += reference[..., 0:2]
            tmp = tmp.sigmoid() # cx,cy,w,h
            
# 地平线参考算法
class MapTRPerceptionDecoderv2(nn.Module):
    ...
    def get_outputs(...):
        ...
        for lvl in range(len(outputs_classes)):
            reference = reference_out[lvl].float()
            # reference = inverse_sigmoid(reference)
            ...
            tmp = bbox_outputs[lvl].float()
            tmp[..., 0:2] += reference[..., 0:2]
            tmp = tmp.sigmoid()
    ...        
    def forward(...):
        outputs = self.bev_decoder(...)
        if self.is_deploy:
            return outputs
        ...
        outputs = self.get_outputs(...)
        ...
        return self._post_process(data, outputs)

其他优化

设计优化

  1. 在 View Transformer,使用 Bevformer 替换地平线支持不友好的公版 MapTRv2 基于 LSS 的 BEVPoolv2 来作为 PV 视角转 BEV 视角的方式;
  2. 在 View Transformer 的 BEV Encoder 模块取消了 BEV 特征的时序融合,也取消了 Bevformer 时序自注意力模块,模型整体精度不低于公版基于 Bevformer 的精度。

5.总结与建议

部署建议

  1. 遵循硬件对齐规则,一般的 tensor shape 对齐到 2 的幂次,conv-like 的算子 H 维度对齐到 8、W 维度对齐到 16、C 维度对齐到 32,若设计尺寸不满足对齐规则时会对 tensor 自动进行 padding,造成无效的算力浪费;
  2. 合理选择 BEV Grid 尺寸,征程6 平台的带宽得到增强,但仍需考虑 BEV Grid 尺寸对模型性能的影响,并且综合衡量模型精度预期,选择合适的 BEV Grid 尺寸以获得模型性能和精度的平衡;
  3. 优先选择 征程6 平台高效 Backbone 来搭建模型,高效 Backbone 经过在 征程6 平台的反复优化和验证,相比其他 Backbone 的选择,在性能和精度上可以同时取得出众的效果,因此选取 征程6 平台高效 Backbone 来搭建模型可以对整个场景模型带来性能和精度的增益。

总结

本文通过对 MapTRv2 进行地平线量化部署的优化,使得模型在 征程 6 计算平台上用较低的量化精度损失,获得单核 26.66 FPS 的部署性能。同时,MapTRv2 的部署经验可以推广到其他相似结构或相似使用场景模型的部署中。
对于地平线 MapTR 参考算法模型,Backbone 和 BEV 中融合方式等的优化仍在探索和实践中,Stay Tuned!

附录

公版论文:MapTR
公版模型源码:GitHub-MapTR


地平线智驾开发者
1 声望2 粉丝

地平线智能驾驶开发者社区旨在连接智能驾驶领域的开发者和对相关技术感兴趣的其他行业开发者、从业者。