头图
本文由微信后台Astra项目团队分享,原题“Ray在微信AI计算中的大规模实践”,下文进行了排版和内容优化。

1、引言

微信存在大量AI计算的应用场景,主要分为三种:流量分发、产品运营和内容创作。流量分发场景中的 AI 计算主要用于搜索、广告、推荐场景的核心特征生产,产品运营相关的 AI 计算主要用于产品功能相关和内容运营相关(低质、优质、生态建设),由于大模型的兴起,AIGC 相关的文生图、图生图、AI 特效等内容创作场景的 AI 计算也有了较多的落地。目前AI 计算几乎覆盖了微信的所有业务场景。
图片
▲ 图 1:微信内 AI 计算应用场景

然而,我们在使用微信已有的后台基础设施实现AI应用时遇到各种问题:
1)在资源层面,AI应用属于计算密集型,计算复杂度高,需要大量资源,直接使用在线资源会导致成本过高;
2)在部署层面,微信后台常见的部署平台更适合部署I/O密集、高并发、高请求量的微服务,而AI应用则需要适配大量异构硬件和异构资源平台,部署复杂度呈指数级上升;
3)在应用编排层面,直接通过消息队列等基础组件解决复杂特征依赖及相关异步过程,开发效率低,变更风险高,可观测性差;
4)在平台层面,由于缺乏平台支撑,算法迭代速度慢,模型能力使用门槛高。因此,微信亟需一个低成本、高效率、低门槛的AI计算平台来解决上述问题。
图片
▲ 图 2:微信内原有基础设施
比如,OCR作为视频号推荐和视频号搜索依赖的一个重要特征,计算量非常大,需要超过100 万核的CPU计算资源,同时对实时性和可靠性的要求很高,需要在 1 分钟内完成特征生成。P6n平台适合做高实时(毫秒级响应)的在线任务,实时性上可以满足需求,但固定部署的资源成本较高,多模型部署复杂度高,不符合需求。Gemini 平台更适合做大规模长时间的离线任务,在实时性和可靠性上不满足需求。我们需要一个高实时(10 秒级响应),支持大规模异构资源部署,低成本和高可靠的近线任务平台。
图片

2、为何在AI计算中引入Ray?

图片
▲ 图 3:使用 Ray 构建 AI 计算的企业
Ray是一个通用的分布式计算引擎,2016年开源于加州大学伯克利分校 RISELab,是发展最快的计算引擎之一。目前已经广泛应用于OpenAI、蚂蚁、字节和华为等公司,是新一代的明星计算框架。首先:编写分布式计算既简单又直观。开发者不必了解所有通信和调度细节,也不必对此进行推理。借助 Ray 的简单原语,可以将任何 Python 函数或类转换为分布式执行:只需添加一个装饰器,就大功告成了。Ray 的分布式API 很简单,所有复杂性都由 Ray 的执行框架处理。函数将被安排为无状态任务执行,而类将是一个有状态的远程服务。

def detect(image_data):

model = load_detect_model()

return model(image_data)


def recognize(det_result):

model = load_recognize_model()

return model(det_result)


def ocr(image_data):

det_result = detect(image_data)

return recognize(det_result)


image_data = load_image_data()

ocr_result = ocr(image_data)

以上是一个图片ocr本地执行的 python 脚本,如果使用微服务部署,因为模型过大,单机显存不够,无法加载所有模型,则需要部署三个微服务模块:detect、recognize和ocr,应用部署的复杂度较高。

@ray.remote(num_gpus=1,num_cpus=16)

def detect(image_data):

model = load_detect_model()

return model(image_data)


@ray.remote(num_gpus=2,num_cpus=16)

def recognize(detect_result):

model = load_recognize_model()

return model(detect_result)


@ray.remote(num_cpus=4)

def ocr(image_data):

det_result = detect.remote(image_data)

return recognize.remote(det_result)


image_data = load_image_data()

ocr_result = ocr.remote(image_data)

如果使用 ray 来做 ocr 推理,只需要添加装饰器@remote,指定模型使用的 cpu 和 gpu 资源数,通过一个python 脚本即可完成ocr应用的部署,效率提升至少一个数量级。
图片
▲ 图 4:Ray AIR 如何以简单的方式统一 ML 库

其次:大多数流行的 ML 库都与 Ray 有很强的集成性,而且 Ray 的原生库也整合了这些库。例如,开发者可以轻松地将 XGBBoost 与 Ray Train 结合使用,可以轻松地将 HuggingFace 与 Ray Serve 结合使用。或者,可以轻松地将 PyTorch 和 TensorFlow 与 Ray Train 结合使用。简而言之,它拥有丰富的集成生态系统,不仅与 ML 库集成,还与其他工具和框架集成。
第三:开发人员可以使用笔记本电脑进行开发。当你想将其扩展到 Ray 集群时,只需更改一行代码或不更改任何代码即可轻松完成。

RAY_ADDRESS=ray://<cluster>:<port> python your_script.py
总的来说,Ray提供了高性能的分布式框架和简单的分布式原语,提供了统一的分布式底盘。Ray融合不同计算范式,与众多开源组件便捷地结合从而实现对现有流程的提效。同时,Ray有完善的生态,数据处理、训练、推理和服务等AI基础设施需要的主流框架都可以很方便地在Ray上进行集成,大量知名企业选用 Ray开发 AI 计算。综上,我们选择了Ray 作为微信 AI 计算平台的分布式底座。

3、微信基于Ray的AstraRay平台

图片
P6n是基于 Kubernetes微服务部署平台,通过自动化编排和弹性扩缩容机制,很好的解决了在线高实时的后台服务运维自动化问题,但不支持大规模的批处理服务,单应用多模型的部署复杂度较高,机器成本较高,不适合“在离线一体”的 AI计算场景。Gemini 是基于 kubernetes 的大数据平台,适合处理离线大规模的数据清洗和模型训练,但是由于调度的实时性不够,不适合高实时性、高吞吐的和高可靠的AI计算场景。Astra 平台要实现高实时、高吞吐、高可靠、低成本的 AI 计算平台,需要解决如下几个核心问题。
比如:
1)为了低成本,需要支持各种异构资源扩展;
2)为了高吞吐,支持超大规模资源调度;
3)降低单应用多模型的部署复杂度。
我们基于 Ray 计算底座,解决了上述三个核心问题,构建出适合 AI 计算平台:AstraRay,在微信内进行了大规模 AI 应用部署的实践。AstraRay 相比社区版本Ray(KubeRay) 有以下改进:
图片

4、AstraRay平台架构概览

图片
▲ 图 7:kuberay 架构
图片
▲ 图 8:KubeRay 提交任务流程
业界使用社区成熟的 KubeRay 方案,通过 Ray 和 K8s 结合,提供了易用、高可用、高伸缩的云原生 Ray 集群服务,可以满足中小规模 AI 应用的需求。但它有集群规模小(最大仅支持数千个节点),异构资源扩展困难(单个 ray 集群只能部署在一个 k8s 集群,不支持联邦k8s 集群)和伸缩慢(受限于 K8s 的扩缩容速度)的问题,不适合微信内超大规模 AI 应用的需求。
图片
▲ 图 9:AstraRay 整体架构
我们在落地 Ray 的过程中遇到了三个核心技术挑战:
1)百万级 pod 的集群管理:在视频号业务场景中,有超过百万核的超级应用,已经远超 K8s 集群上限,我们希望单个 Ray 应用能支持百万级别的 pod 的扩展;
2)不稳定资源下构建稳定服务:由于 AI 计算的资源消耗大,为了降低成本,我们大量使用了低成本、闲置,但稳定性差的计算资源。我们希望可以在不稳定资源上提供可靠稳定的服务;
3)降低应用部署的复杂度:微信内 AI 应用遇到模型、硬件、模块三种维度的异构问题,部署复杂度高。
我们希望使用统一的应用维度来简化应用部署,即将 O(n^3) 复杂度降低为 O(1)。Astra 的部署系统架构如上图,在 Poseidon/算力/太极/Gemini 等多个资源平台基础上扩展多个tke模块,组成拥有数百万核CPU、万卡GPU级别的超大集群。我们通过服务发现的架构设计,解决了百万级pod集群管理的问题,通过负载均衡和容灾调度解决了不稳定资源构建稳定服务的挑战,同时通过应用调度解决了多模型应用部署复杂度的问题。接下来详细介绍我们如何应对这三个技术挑战。

5、技术挑战1:单集群支持百万级计算节点

5.1 架构选择

图片

图片
▲ 图 11:集群调度架构分类

业界系统的调度架构主要分为四类:单体调度、两层调度、共享调度和混合调度。这些调度架构的本质区别其实只有两点:
1)调度时调度器是否拥有全局的资源视图;
2)不同的应用是否拥有多个资源调度器。

单体调度顾名思义,即只有一个调度器,调度器拥有全局资源视图的架构,Google Borg 和 K8s 都采用这个架构。单体架构的好处是,所有的任务都由唯一的调度器处理,调度器可以充分的考虑全局的资源使用情况,能方便的做出最优调度。但由于调度架构的限制,集群性能受限于单体的性能,无法支撑过大的集群。两层调度拥有多个调度器,Apache Mesos 和 Hadoop YARN 都采用这个架构。两层调度中,每个应用的调度器首先向中心节点获取资源,再将其分配给应用中的各个任务。两层调度解决了单体调度的性能问题,但是调度器仅拥有局部资源视图,无法做出最优调度。共享调度拥有多个调度器,每个调度器拥有全局资源视图,Omega 采用了这个架构。共享调度方案中,每个调度器都可以并发地从整个资源池中申请资源,解决了性能问题和最优调度问题,且可以支持较大集群。因此,AstraRay 选择共享调度来支持超大规模的资源管理。调度器间资源申请冲突可通过悲观锁或乐观锁来解决,AstraRay 实现了基于乐观锁的方案,出现冲突后再处理,无需中心节点,并发度更高。

5.2 Starlink调度

我们提出了一个新的调度系统 Starlink 来更好适配异构资源和硬件。Starlink采用共享调度架构,通过乐观并发调度处理冲突,支持部署在任何基础资源平台(K8s/Yard/CVM)之上,且允许单个应用运行于多种异构的资源节点上。
图片
▲ 图 12:Starlink 调度架构
Starlink主要分为四个部分:
1)Node:任意部署了 Starlink 的 Agent 节点都可以成为 Node,Node 每秒会向Resource 上报自己的状态,并处理APP部署的任务;
2)Resource:Resource 从 Node 接收心跳,并预聚合心跳后广播到其他 Resource 节点。Resource 整合所有 Node 组成在线列表,可像无状态服务一样水平扩容。为提供业务间隔离性和降低广播的扇出比,Resource集群数也会扩展;
3)App:App 是运行在 Starlink 上的应用,每个 App 都拥有独立的资源调度器,这些调度器都从 Resource 获取全局的资源视图,通过乐观并发抢占的方式分配资源;
4)Scheduler:Scheduler 负责应用的负载均衡和容灾,Scheduler 会根据不同的节点的性能和状态动态的调整节点的权重,并通过带权路由算法来分配请求。
在微信的后台服务中,每个微服务都是独立的模块。而面对超大规模的应用,由于 K8s 自身扩缩容性能的限制,往往需要部署多个模块才能满足一个AI应用,扩缩容速度受限。与K8s 不同的是,Starlink 使用预创建的 Pod,加快了扩缩容的速度,资源迁移变得非常简单。基于良好的设计,Starlink可以支持单应用百万节点,乐观调度也使得调度速度极快,每分钟可完成数万节点的调度。Starlink 还可以跨多个资源平台调度,支持异构机型,不必为每个应用创建多个模块进行部署,大幅提高了内部的资源利用率和资源的周转效率。

6、 技术挑战2:不稳定资源下构建稳定服务

6.1 概述

图片
AstraRay 大量接入低价或免费资源,pod 稳定性较差,日常会出现较高的资源驱逐率和亚健康的情况,直接使用会导致服务失败率高、延时高。另外,用传统的调度方法调度 AI 计算任务很容易出现计算倾斜,从而导致整体资源利用率低。我们通过更快的容灾调度解决服务失败率高的问题,通过更优的调度算法来解决服务延时高和资源利用率低的问题。
图片
▲ 图 14:Starlink 调度流程

6.2 快速容灾调度

图片
▲ 图 15:kubernetes PreStop Hook 机制
我们通过两个手段来加速容灾调度:
1)在资源平台实际驱逐 pod 之前,通过 K8s 的 PreStop Hook 机制实现服务程序优雅退出,同时Node将自己标记为离线,并通过心跳上报到 Resource。
2)Resouce 通过预聚合广播,快速将状态同步到整个 Resouce 集群,Scheduler 每隔 3s 通过拉取 Resouce 的在线列表来进行动态权重计算,定期更新路由表。最终可以实现在 4s 内将节点驱逐,从而大幅降低了应用的失败率。
图片

6.3 动态权重SWRR路由算法

AI 应用往往具有计算量大,单机 QPS 低的特点。在这种服务场景下,微信后台常用的一致性哈希已经无法将请求均匀的分发了。除此之外,低优和免费资源因为经常被在线任务抢占,节点间性能往往参差不齐。我们选用 SWRR(Smooth Weighted Round-Robin)算法作为基座,并进行优化,首次应用到低 QPS 的任务调度系统中,实现请求分布的快速调整。
算法步骤如下。
1)更新节点权重(3s一次):对于每个节点:节点权重=节点核数或卡数∗log(剩余利用率)∗(当前利用率/节点当前并发)这个公式构建了一个模型,简单的描述了请求量预期的分布,节点权重描述的是当前节点处理新增任务的能力,处理能力越高的节点应该分配到更多的请求。
其中:
1) 节点核数或卡数是代表节点的资源总数,资源总数与处理能力成正比,对于不同的GPU,资源总数即不同卡的性能对比系数;
2) log(剩余利用率)是节点当前剩余资源,剩余资源量与处理能力成正比。其中,log是一个经验值,在log后,算法在高负载时表现较好;
3) (当前利用率/节点当前并发)本质上是机器性能的体现,假设大盘下每个任务同一时刻的消耗是接近的时,这个公式成立。

2)选择节点流程:这里是SWRR的标准流程,因为SWRR算法的复杂度是O(n),我们的实现会对性能做一定的优化,比如分block,多算法实例等。
1) 对于每个节点:节点路由权重 = 节点路由权重 + 节点权重;
2) 选择当前路由权重最大的节点;3) 被选择的节点的路由权重减去所有节点权重之和。算法流程样例,假设{A,B,C}节点权重为{5,1,1}。
图片

图片

图片
最终,我们使用自适应权重的 SWRR 算法,动态平衡请求分布,拉平利用率的同时,还降低了请求耗时。

7、 技术挑战3:降低应用部署的复杂度

图片
▲ 图 20:AI应用的部署复杂度AI 应用的部署涉及三个方面:多模型扩展、多卡型扩展、多模块扩展(单模块超过 K8s 部署上限),一个超级应用的部署复杂度为 O(n^3)。AstraRay 的创新方案使得一个应用可实现三个维度的扩展,将复杂度降低为O(1),极大提升了 AI 应用部署的效率。

7.1 多模型扩展挑战

多模型扩展问题的本质是模型运行环境的动态切换,这里包含两个问题:
1)运行时动态切换;
2)模型的快速下发。
动态切换运行时:
图片
▲ 图 21:Ray动态运行时

我们首先解决运行环境的问题。Ray自身提供RuntimeEnv作为运行环境管理,但Ray的RuntimeEnv无法切换Python版本,且Ray对于Python运行环境之外的依赖,只能依靠机器本身Docker环境,不够灵活。我们支持了Conda作为Python运行环境的隔离和打包,与Ray本身的Conda不同在于:Ray的Conda要先拉起Ray,而 Ray 的worker节点要求和Ray的头节点使用相同的版本,导致应用无法切换Python版本。而我们通过在启动Ray之前初始化运行环境,使每个应用自定义不同的Python版本。具体的操作为:在应用的代码打包上传之前,我们会根据用户填写的 requirement.txt,使用conda-pack打包对应的Conda环境,在启动Ray之前,分发到对应的节点上。其中提前打包可以避免大规模快速扩容对软件源带来下载压力。我们也支持用户自定义打包例如 TensorRT 等环境,提供更强大的环境自定义能力。
图片
▲ 图 22:AstraRay 运行时

快速的模型下发:随着大模型时代的到来,模型文件变得越来越大,LLM模型有数十GB,下载一个模型需要数十分钟。Ray可以指定working_dir来分发代码和模型,但是Ray单点依赖gcs节点,默认的大小限制也仅仅500MB,无法用于真正的生产环境。为此,我们在Node上嵌入了P2P网络。P2P分为Server端和SDK接入端,server端通过心跳管理P2P节点,并维护集群中的种子信息。P2P节点则提供文件分片的缓存和传输能力。
图片
▲ 图 23:P2P server 端架构
图片
▲ 图 24:P2P sdk 端架构
我们还对P2P的网络和性能做了极致的优化:
1)网络打洞能力:面对复杂的网络环境,P2P支持NAT探测打洞,尽最大努力避免网络不通的情况;
2)节点自动限速能力:P2P作为一个嵌入式的组件,要避免节点的带宽和CPU被P2P进程消耗完,所以节点加入P2P网络时,会对节点进行测速,并设定合适的阈值,避免影响正常服务;
3)全局限速:即使已经限制了单节点的速度,仍然有可能会因为上层交换机或核心网络带宽限制,影响到其他服务,支持从服务端下发全网限速,避免影响其他服务;
4)冷启动和热点下载加速:一个新的文件下发时,因为全网都不存在这个文件,如果按序下载,可能会导致下载缓慢,请求的节点分片集中。通过打乱分片下载的顺序,可以将请求分布到不同的节点。
图片
▲ 图 25:P2P下载加速

7.2 多模块扩展挑战

图片
▲ 图 26:Ray 联邦集群架构
为了提升 Ray 应用的扩展能力,我们通过starlink实现了Ray联邦集群架构,每个Ray应用可以拥有多个Ray集群,单个Ray集群都拥有完整的功能。用户可以调整单个Ray集群的大小,在单个Ray集群内进行Actor的资源分配,提升应用处理能力,提升资源利用率,实现垂直扩展能力;可以通过扩容Ray 集群数量,实现水平扩展。我们还在 Ray 联邦集群架构基础上,增强了 Ray集群的容灾能力,具体策略为:当head node下线,则水平重新扩容一个Ray集群。当worker node下线,则在这个Ray集群重新拉起一个worker。通过上述策略,我们使用不稳定的低优资源的情况下,Ray自身架构引起的失败影响可以降低到最低。
7.3 多卡型扩展
图片
▲ 图 27:TFCC推理运行时
多卡型扩展的模型推理部署有三个比较大的挑战:
1)不同的推理业务形态多样:引擎种类多模型类型多(pytorch/onnx/tensorrt...);
2)异构卡型的适配工作繁琐且重复度高(英伟达/紫霄/华为);
3)多种引擎支持、模型切换引擎成本高。

我们基于TFCC框架提供标准服务框架,统一了接入模式,透明化了引擎实现,算法仅需声明模型,不再需要手写推理代码,同时内化异构卡型适配工作,屏蔽硬件细节,在应用层实现一份代码、多处推理,支持灵活多样的AI应用场景。

8、本文小结

AI 时代的来临对微信后台的基础设施带来了许多挑战。我们引入业界先进的Ray作为基座,适配了微信的基础环境,提供了方便快捷的AI应用开发范式。同时,在Ray的基础上,简化了Ray本身集群管理的难度,并使用低成本的闲置资源节省了大量的机器成本。AstraRay作为一个刚诞生一年的项目,为微信的AI应用的工程化提供了坚实基础,并且在持续不断的优化,为将来更多AI应用在微信落地做好了准备。

9、参考资料

[1] Ray on Kubernetes

[2] OpenAI 背书的计算引擎迎里程碑:蚂蚁集团成功部署百万核心计算平台

[3] 使用 KubeRay 和 Kueue 在 Kubernetes 中托管 Ray 工作负载

[4] Four Reasons Why Leading Companies Are Betting On Ray

[5] The evolution of cluster scheduler architectures

[6] API7 Cloud Integrates with Kubernetes Service Discovery

[7] Upstream: smooth weighted round-robin balancing

[8] Handling files and packages on your cluster with Ray runtime environments

10、微信团队其它技术文章

《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》

《腾讯技术分享:GIF动图技术详解及手机QQ动态表情压缩技术实践》

《微信团队分享:Kotlin渐被认可,Android版微信的技术尝鲜之旅》

《微信团队首次揭秘微信红包算法,为何你抢到的是0.01元》

《微信团队分享:极致优化,iOS版微信编译速度3倍提升的实践总结》

《IM“扫一扫”功能很好做?看看微信“扫一扫识物”的完整技术实现》

《微信团队分享:微信支付代码重构带来的移动端软件架构上的思考》

《IM开发宝典:史上最全,微信各种功能参数和逻辑规则资料汇总》

《微信团队分享:微信直播聊天室单房间1500万在线的消息架构演进之路》

《企业微信的IM架构设计揭秘:消息模型、万人群、已读回执、消息撤回等》

《IM全文检索技术专题(四):微信iOS端的最新全文检索技术优化实践》

《微信团队分享:微信后台在海量并发请求下是如何做到不崩溃的》

《微信Windows端IM消息数据库的优化实践:查询慢、体积大、文件损坏等》

《微信技术分享:揭秘微信后台安全特征数据仓库的架构设计》

《企业微信针对百万级组织架构的客户端性能优化实践》

《揭秘企业微信是如何支持超大规模IM组织架构的——技术解读四维关系链》

《微信团队分享:详解iOS版微信视频号直播中因帧率异常导致的功耗问题》

《微信团队分享:微信后端海量数据查询从1000ms降到100ms的技术实践》

《大型IM工程重构实践:企业微信Android端的重构之路》

《IM技术干货:假如你来设计微信的群聊,你该怎么设计?》

《微信团队分享:来看看微信十年前的IM消息收发架构,你做到了吗》

(本文已同步发布于:http://www.52im.net/thread-4731-1-1.html


JackJiang
1.6k 声望810 粉丝

专注即时通讯(IM/推送)技术学习和研究。