环境配置与数据准备
本节中,我们将演示如何安装 XTuner。 推荐使用 Python-3.10 的 conda 虚拟环境安装 XTuner。
步骤 0. 使用 conda 先构建一个 Python-3.10 的虚拟环境
cd ~
git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env
步骤 1. 安装 XTuner
此处推荐源码安装,更多的安装方法请回到前面看 XTuner 文档
git clone https://github.com/InternLM/xtuner.git
cd /root/finetune/xtuner
pip install -e '.[all]'
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0
但是!这里我总是报错,缺失依赖项,每次安装时间特别久
使用官方文档的安装解决:
https://xtuner.readthedocs.io/zh-cn/latest/get_started/instal...
通过 pip 直接安装
pip install -U 'xtuner[deepspeed]'
验证安装
为了验证 XTuner 是否安装正确,我们将使用命令打印配置文件。
打印配置文件: 在命令行中使用 xtuner list-cfg 验证是否能打印配置文件列表。
xtuner list-cfg
修改提供的数据
步骤 0. 创建一个新的文件夹用于存储微调数据
mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl /root/finetune/data
此时 finetune
文件夹下应该有如下结构
finetune
├── data
│ └── assistant_Tuner.jsonl
└── xtuner
步骤 1. 创建修改脚本
我们写一个脚本生成修改我们需要的微调训练数据,在当前目录下创建一个 change_script.py 文件,内容如下:
创建 change_script.py
文件
touch /root/finetune/data/change_script.py
import json
import argparse
from tqdm import tqdm
def process_line(line, old_text, new_text):
# 解析 JSON 行
data = json.loads(line)
# 递归函数来处理嵌套的字典和列表
def replace_text(obj):
if isinstance(obj, dict):
return {k: replace_text(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [replace_text(item) for item in obj]
elif isinstance(obj, str):
return obj.replace(old_text, new_text)
else:
return obj
# 处理整个 JSON 对象
processed_data = replace_text(data)
# 将处理后的对象转回 JSON 字符串
return json.dumps(processed_data, ensure_ascii=False)
def main(input_file, output_file, old_text, new_text):
with open(input_file, 'r', encoding='utf-8') as infile, \
open(output_file, 'w', encoding='utf-8') as outfile:
# 计算总行数用于进度条
total_lines = sum(1 for _ in infile)
infile.seek(0) # 重置文件指针到开头
# 使用 tqdm 创建进度条
for line in tqdm(infile, total=total_lines, desc="Processing"):
processed_line = process_line(line.strip(), old_text, new_text)
outfile.write(processed_line + '\n')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
parser.add_argument("input_file", help="Input JSONL file to process")
parser.add_argument("output_file", help="Output file for processed JSONL")
parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
parser.add_argument("--new_text", default="机智流", help="Text to replace with")
args = parser.parse_args()
main(args.input_file, args.output_file, args.old_text, args.new_text)
然后修改如下: 打开 change_script.py ,修改 --new_text 中 default="机智流" 为你的名字。
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
parser.add_argument("input_file", help="Input JSONL file to process")
parser.add_argument("output_file", help="Output file for processed JSONL")
parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
- parser.add_argument("--new_text", default="机智流", help="Text to replace with")
+ parser.add_argument("--new_text", default="你的名字", help="Text to replace with")
args = parser.parse_args()
步骤 2. 执行脚本
usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl
assistant_Tuner_change.jsonl 是修改后符合 XTuner 格式的训练数据。
此时 data 文件夹下应该有如下结构
|-- /finetune/data/
|-- assistant_Tuner.jsonl
|-- assistant_Tuner_change.jsonl
步骤 3. 查看数据
cat assistant_Tuner_change.jsonl | head -n 3
训练启动
步骤 0. 复制模型
在InternStudio开发机中的已经提供了微调模型,可以直接软链接即可。
本模型位于/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat
mkdir /root/finetune/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat
步骤 1. 修改 Config
获取官方写好的 config
cd {path/to/finetune}
cd /root/finetune
mkdir ./config
cd config
xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./
修改以下几行
#######################################################################
# PART 1 Settings #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2_5-7b-chat'
+ pretrained_model_name_or_path = '/root/finetune/models/internlm2_5-7b-chat'
- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = '/root/finetune/data/assistant_Tuner_change.jsonl'
evaluation_inputs = [
- '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+ '请介绍一下你自己', 'Please introduce yourself'
]
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(
type=process_hf_dataset,
- dataset=dict(type=load_dataset, path=alpaca_en_path),
+ dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
tokenizer=tokenizer,
max_length=max_length,
- dataset_map_fn=alpaca_map_fn,
+ dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn)
除此之外,我们还可以对一些重要的参数进行调整,包括学习率(lr)、训练的轮数(max_epochs)等等。
步骤 2. 启动微调
完成了所有的准备工作后,我们就可以正式的开始我们下一阶段的旅程:XTuner 启动~!
当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。
xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_5_chat_7b_qlora_alpaca_e3_copy.py。
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。--deepspeed 则为使用 deepspeed, deepspeed 可以节约显存。
运行命令进行微调
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。