【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的?
重要性:★★★
NLP Github 项目:
NLP 项目实践:fasterai/nlp-project-practice
介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验
AI 藏经阁:https://gitee.com/fasterai/ai-e-book
介绍:该仓库主要分享了数百本 AI 领域电子书
AI 算法面经:fasterai/nlp-interview-handbook#面经
介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器
NLP 剑指Offer:https://gitee.com/fasterai/nlp-interview-handbook
介绍:该仓库汇总了 NLP 算法工程师高频面题
Transformer 位置编码矩阵究竟是如何计算的呢?如下所示,Transformer 论文“Attention Is All You Need”的作者使用了正弦函数来计算位置编码:
- $pos$ 表示该词在句子中的位置
- $i$ 表示在输入矩阵中的位置
- $d_{model}$ 表示嵌入维度
计算实例:对于给定的句子 I am good 为例,嵌入维度为4,计算位置编码。
- 根据公式计算位置编码矩阵:
- 计算位置编码矩阵(简化版):
- 继续计算位置编码矩阵:
- 最终的位置编码矩阵 $P$ 如图所示:
NLP 大模型高频面题汇总
NLP基础面
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
【NLP 面试宝典 之 正则化】 必须要会的高频面题
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
......
BERT 模型面
LLMs 微调面
【NLP 面试宝典 之 LoRA微调】 必须要会的高频面题
【NLP 面试宝典 之 Prompt】 必须要会的高频面题
【NLP 面试宝典 之 提示学习微调】 必须要会的高频面题
【NLP 面试宝典 之 PEFT微调】 必须要会的高频面题
【NLP 面试宝典 之 Chain-of-Thought微调】 必须要会的高频面题
......
本文由mdnice多平台发布
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。