import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import pandas as pd
下载必要的情感分析语料库(如果尚未下载)
nltk.download('vader_lexicon')
初始化情感分析器
sid = SentimentIntensityAnalyzer()
假设的社交媒体帖子数据(可替换为真实数据)
posts = [
"I love this new movie! The plot is amazing and the actors did a great job.",
"This product is a total waste of money. I'm so disappointed.",
"The weather today is just okay. Nothing special.",
"I had a wonderful dinner at that new restaurant. Highly recommended!"
]
存储分析结果的列表
results = []
对每个帖子进行情感分析
for post in posts:
sentiment_scores = sid.polarity_scores(post)
compound_score = sentiment_scores['compound']
if compound_score >= 0.05:
sentiment = 'Positive'
elif compound_score <= -0.05:
sentiment = 'Negative'
else:
sentiment = 'Neutral'
results.append({
'Post': post,
'Sentiment': sentiment,
'Compound Score': compound_score
})
将结果转换为 DataFrame 以便展示
df = pd.DataFrame(results)
print(df)
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。