在前面的文章中,我们讨论了 AI Agent 的性能优化。今天,我想分享一个实际的项目案例:如何构建一个代码助手 Agent。这个项目源于我们团队的一个真实需求 - 提高日常开发效率。

从一个真实需求说起

还记得去年团队周会上的讨论:

小王:代码审查太耗时了,能不能有工具帮忙?
小李:是啊,写测试也很烦,经常不知道要覆盖哪些场景
我:要不我们做个AI助手?
团队:好啊,正好可以用最近学的Agent技术

经过讨论,我们确定了几个核心需求:

  1. 代码审查辅助
  2. 测试用例生成
  3. 文档注释补全
  4. 性能优化建议

技术方案设计

首先是整体架构:

from typing import List, Dict, Any
from enum import Enum
from pydantic import BaseModel
import asyncio

class CodeTask(Enum):
    REVIEW = "review"
    TEST = "test"
    DOCUMENT = "document"
    OPTIMIZE = "optimize"

class CodeContext(BaseModel):
    file_path: str
    code_content: str
    language: str
    git_diff: Optional[str]
    dependencies: Dict[str, str]

class CodeAssistant:
    def __init__(
        self,
        config: Dict[str, Any]
    ):
        # 1. 初始化模型
        self.code_model = CodeLLM(
            model="codellama-34b",
            temperature=0.2,
            context_length=8000
        )
        
        # 2. 初始化知识库
        self.knowledge_base = VectorStore(
            embeddings=CodeEmbeddings(),
            collection="code_knowledge"
        )
        
        # 3. 初始化工具集
        self.tools = {
            "git": GitTool(),
            "ast": ASTParser(),
            "linter": CodeLinter(),
            "metrics": CodeMetrics()
        }
        
    async def process_task(
        self,
        task: CodeTask,
        context: CodeContext
    ) -> Dict[str, Any]:
        # 1. 准备上下文
        enriched_context = await self._enrich_context(
            context
        )
        
        # 2. 获取相关知识
        knowledge = await self._retrieve_knowledge(
            task,
            enriched_context
        )
        
        # 3. 生成处理方案
        plan = await self._generate_plan(
            task,
            enriched_context,
            knowledge
        )
        
        # 4. 执行任务
        result = await self._execute_plan(
            plan,
            enriched_context
        )
        
        return result
        
    async def _enrich_context(
        self,
        context: CodeContext
    ) -> Dict[str, Any]:
        # 并行获取上下文信息
        async with asyncio.TaskGroup() as group:
            # 1. 获取Git历史
            git_task = group.create_task(
                self.tools["git"].get_history(
                    context.file_path
                )
            )
            
            # 2. 解析AST
            ast_task = group.create_task(
                self.tools["ast"].parse(
                    context.code_content,
                    context.language
                )
            )
            
            # 3. 运行Linter
            lint_task = group.create_task(
                self.tools["linter"].check(
                    context.code_content,
                    context.language
                )
            )
            
        return {
            "git_history": git_task.result(),
            "ast": ast_task.result(),
            "lint_results": lint_task.result(),
            **context.dict()
        }

代码审查功能

首先实现最急需的代码审查功能:

class CodeReviewer:
    def __init__(
        self,
        model: CodeLLM,
        rules: List[Dict[str, Any]]
    ):
        self.model = model
        self.rules = rules
        
    async def review(
        self,
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 静态分析
        issues = await self._static_analysis(
            context
        )
        
        # 2. 模式匹配
        patterns = await self._pattern_matching(
            context
        )
        
        # 3. 语义分析
        semantics = await self._semantic_analysis(
            context,
            issues,
            patterns
        )
        
        # 4. 生成建议
        suggestions = await self._generate_suggestions(
            context,
            issues,
            patterns,
            semantics
        )
        
        return {
            "issues": issues,
            "patterns": patterns,
            "semantics": semantics,
            "suggestions": suggestions
        }
        
    async def _static_analysis(
        self,
        context: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        issues = []
        
        # 1. 检查代码风格
        style_issues = await self._check_style(
            context["code_content"],
            context["language"]
        )
        issues.extend(style_issues)
        
        # 2. 检查潜在bug
        bug_issues = await self._check_bugs(
            context["ast"]
        )
        issues.extend(bug_issues)
        
        # 3. 检查性能问题
        perf_issues = await self._check_performance(
            context["ast"],
            context["metrics"]
        )
        issues.extend(perf_issues)
        
        return issues
        
    async def _semantic_analysis(
        self,
        context: Dict[str, Any],
        issues: List[Dict[str, Any]],
        patterns: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        # 使用LLM进行深度分析
        prompt = self._build_analysis_prompt(
            context,
            issues,
            patterns
        )
        
        response = await self.model.analyze(
            prompt,
            temperature=0.3
        )
        
        return self._parse_analysis_response(
            response
        )

测试生成功能

接下来是测试用例生成:

class TestGenerator:
    def __init__(
        self,
        model: CodeLLM,
        coverage_target: float = 0.8
    ):
        self.model = model
        self.coverage_target = coverage_target
        
    async def generate_tests(
        self,
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 分析代码结构
        structure = await self._analyze_structure(
            context["ast"]
        )
        
        # 2. 识别测试点
        test_points = await self._identify_test_points(
            structure
        )
        
        # 3. 生成测试用例
        test_cases = await self._generate_test_cases(
            context,
            test_points
        )
        
        # 4. 验证覆盖率
        coverage = await self._verify_coverage(
            test_cases,
            context
        )
        
        return {
            "test_cases": test_cases,
            "coverage": coverage
        }
        
    async def _identify_test_points(
        self,
        structure: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        points = []
        
        # 1. 函数参数边界
        points.extend(
            self._get_parameter_boundaries(structure)
        )
        
        # 2. 条件分支覆盖
        points.extend(
            self._get_branch_conditions(structure)
        )
        
        # 3. 异常处理路径
        points.extend(
            self._get_exception_paths(structure)
        )
        
        return points
        
    async def _generate_test_cases(
        self,
        context: Dict[str, Any],
        test_points: List[Dict[str, Any]]
    ) -> List[Dict[str, Any]]:
        test_cases = []
        
        for point in test_points:
            # 1. 构建测试场景
            scenario = await self._build_scenario(
                point,
                context
            )
            
            # 2. 生成测试代码
            test_code = await self.model.generate(
                prompt=self._build_test_prompt(
                    scenario
                ),
                temperature=0.2
            )
            
            # 3. 添加断言
            test_code = await self._add_assertions(
                test_code,
                scenario
            )
            
            test_cases.append({
                "point": point,
                "scenario": scenario,
                "code": test_code
            })
            
        return test_cases

文档生成功能

再来实现文档注释补全:

class DocumentGenerator:
    def __init__(
        self,
        model: CodeLLM,
        style_guide: Dict[str, Any]
    ):
        self.model = model
        self.style_guide = style_guide
        
    async def generate_docs(
        self,
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 分析代码结构
        structure = await self._analyze_code(
            context["ast"]
        )
        
        # 2. 提取关键信息
        info = await self._extract_info(
            structure,
            context
        )
        
        # 3. 生成文档
        docs = await self._generate_documentation(
            info,
            context["language"]
        )
        
        return {
            "docs": docs,
            "structure": structure,
            "info": info
        }
        
    async def _extract_info(
        self,
        structure: Dict[str, Any],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 提取函数信息
        functions = await self._extract_functions(
            structure
        )
        
        # 2. 提取类信息
        classes = await self._extract_classes(
            structure
        )
        
        # 3. 提取依赖关系
        dependencies = await self._extract_dependencies(
            context
        )
        
        return {
            "functions": functions,
            "classes": classes,
            "dependencies": dependencies
        }
        
    async def _generate_documentation(
        self,
        info: Dict[str, Any],
        language: str
    ) -> Dict[str, str]:
        docs = {}
        
        # 1. 生成函数文档
        for func in info["functions"]:
            docs[func["name"]] = await self._generate_function_doc(
                func,
                language
            )
            
        # 2. 生成类文档
        for cls in info["classes"]:
            docs[cls["name"]] = await self._generate_class_doc(
                cls,
                language
            )
            
        # 3. 生成模块文档
        docs["module"] = await self._generate_module_doc(
            info,
            language
        )
        
        return docs

性能优化建议

最后是性能优化建议功能:

class PerformanceOptimizer:
    def __init__(
        self,
        model: CodeLLM,
        metrics: CodeMetrics
    ):
        self.model = model
        self.metrics = metrics
        
    async def optimize(
        self,
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 收集性能指标
        metrics = await self._collect_metrics(
            context
        )
        
        # 2. 识别瓶颈
        bottlenecks = await self._identify_bottlenecks(
            metrics
        )
        
        # 3. 生成优化建议
        suggestions = await self._generate_suggestions(
            context,
            bottlenecks
        )
        
        return {
            "metrics": metrics,
            "bottlenecks": bottlenecks,
            "suggestions": suggestions
        }
        
    async def _collect_metrics(
        self,
        context: Dict[str, Any]
    ) -> Dict[str, float]:
        # 1. 复杂度指标
        complexity = await self.metrics.calculate_complexity(
            context["ast"]
        )
        
        # 2. 性能指标
        performance = await self.metrics.measure_performance(
            context["code_content"]
        )
        
        # 3. 内存指标
        memory = await self.metrics.analyze_memory(
            context["ast"]
        )
        
        return {
            "complexity": complexity,
            "performance": performance,
            "memory": memory
        }
        
    async def _generate_suggestions(
        self,
        context: Dict[str, Any],
        bottlenecks: List[Dict[str, Any]]
    ) -> List[Dict[str, Any]]:
        suggestions = []
        
        for bottleneck in bottlenecks:
            # 1. 分析优化空间
            potential = await self._analyze_potential(
                bottleneck,
                context
            )
            
            # 2. 生成优化方案
            solution = await self.model.generate(
                prompt=self._build_optimization_prompt(
                    bottleneck,
                    potential
                ),
                temperature=0.2
            )
            
            # 3. 评估收益
            benefits = await self._evaluate_benefits(
                solution,
                context
            )
            
            suggestions.append({
                "bottleneck": bottleneck,
                "solution": solution,
                "benefits": benefits
            })
            
        return suggestions

实际效果

经过几个月的使用,这个代码助手给团队带来了明显的收益:

  1. 代码审查效率提升

    • 常规问题自动发现
    • 审查时间减少40%
    • 代码质量明显提升
  2. 测试覆盖率提高

    • 测试用例更全面
    • 覆盖率提升30%
    • Bug发现更及时
  3. 文档质量改善

    • 文档更新更及时
    • 注释更加规范
    • 可维护性提升

实践心得

在开发这个代码助手的过程中,我总结了几点经验:

  1. 场景要聚焦

    • 从最痛点开始
    • 循序渐进扩展
    • 持续收集反馈
  2. 体验要顺滑

    • 响应要快速
    • 建议要准确
    • 集成要便捷
  3. 可靠性要高

    • 异常要处理
    • 结果要验证
    • 性能要稳定

写在最后

一个好的代码助手不仅要懂代码,还要理解开发者的需求和习惯。它就像一个经验丰富的老程序员,在你需要的时候给出恰到好处的建议。

在下一篇文章中,我会讲解如何开发一个智能客服Agent。如果你对代码助手的开发有什么想法,欢迎在评论区交流。


远洋录
3 声望2 粉丝