在前面的文章中,我们讨论了 AI Agent 的性能优化。今天,我想分享一个实际的项目案例:如何构建一个代码助手 Agent。这个项目源于我们团队的一个真实需求 - 提高日常开发效率。
从一个真实需求说起
还记得去年团队周会上的讨论:
小王:代码审查太耗时了,能不能有工具帮忙?
小李:是啊,写测试也很烦,经常不知道要覆盖哪些场景
我:要不我们做个AI助手?
团队:好啊,正好可以用最近学的Agent技术
经过讨论,我们确定了几个核心需求:
- 代码审查辅助
- 测试用例生成
- 文档注释补全
- 性能优化建议
技术方案设计
首先是整体架构:
from typing import List, Dict, Any
from enum import Enum
from pydantic import BaseModel
import asyncio
class CodeTask(Enum):
REVIEW = "review"
TEST = "test"
DOCUMENT = "document"
OPTIMIZE = "optimize"
class CodeContext(BaseModel):
file_path: str
code_content: str
language: str
git_diff: Optional[str]
dependencies: Dict[str, str]
class CodeAssistant:
def __init__(
self,
config: Dict[str, Any]
):
# 1. 初始化模型
self.code_model = CodeLLM(
model="codellama-34b",
temperature=0.2,
context_length=8000
)
# 2. 初始化知识库
self.knowledge_base = VectorStore(
embeddings=CodeEmbeddings(),
collection="code_knowledge"
)
# 3. 初始化工具集
self.tools = {
"git": GitTool(),
"ast": ASTParser(),
"linter": CodeLinter(),
"metrics": CodeMetrics()
}
async def process_task(
self,
task: CodeTask,
context: CodeContext
) -> Dict[str, Any]:
# 1. 准备上下文
enriched_context = await self._enrich_context(
context
)
# 2. 获取相关知识
knowledge = await self._retrieve_knowledge(
task,
enriched_context
)
# 3. 生成处理方案
plan = await self._generate_plan(
task,
enriched_context,
knowledge
)
# 4. 执行任务
result = await self._execute_plan(
plan,
enriched_context
)
return result
async def _enrich_context(
self,
context: CodeContext
) -> Dict[str, Any]:
# 并行获取上下文信息
async with asyncio.TaskGroup() as group:
# 1. 获取Git历史
git_task = group.create_task(
self.tools["git"].get_history(
context.file_path
)
)
# 2. 解析AST
ast_task = group.create_task(
self.tools["ast"].parse(
context.code_content,
context.language
)
)
# 3. 运行Linter
lint_task = group.create_task(
self.tools["linter"].check(
context.code_content,
context.language
)
)
return {
"git_history": git_task.result(),
"ast": ast_task.result(),
"lint_results": lint_task.result(),
**context.dict()
}
代码审查功能
首先实现最急需的代码审查功能:
class CodeReviewer:
def __init__(
self,
model: CodeLLM,
rules: List[Dict[str, Any]]
):
self.model = model
self.rules = rules
async def review(
self,
context: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 静态分析
issues = await self._static_analysis(
context
)
# 2. 模式匹配
patterns = await self._pattern_matching(
context
)
# 3. 语义分析
semantics = await self._semantic_analysis(
context,
issues,
patterns
)
# 4. 生成建议
suggestions = await self._generate_suggestions(
context,
issues,
patterns,
semantics
)
return {
"issues": issues,
"patterns": patterns,
"semantics": semantics,
"suggestions": suggestions
}
async def _static_analysis(
self,
context: Dict[str, Any]
) -> List[Dict[str, Any]]:
issues = []
# 1. 检查代码风格
style_issues = await self._check_style(
context["code_content"],
context["language"]
)
issues.extend(style_issues)
# 2. 检查潜在bug
bug_issues = await self._check_bugs(
context["ast"]
)
issues.extend(bug_issues)
# 3. 检查性能问题
perf_issues = await self._check_performance(
context["ast"],
context["metrics"]
)
issues.extend(perf_issues)
return issues
async def _semantic_analysis(
self,
context: Dict[str, Any],
issues: List[Dict[str, Any]],
patterns: List[Dict[str, Any]]
) -> Dict[str, Any]:
# 使用LLM进行深度分析
prompt = self._build_analysis_prompt(
context,
issues,
patterns
)
response = await self.model.analyze(
prompt,
temperature=0.3
)
return self._parse_analysis_response(
response
)
测试生成功能
接下来是测试用例生成:
class TestGenerator:
def __init__(
self,
model: CodeLLM,
coverage_target: float = 0.8
):
self.model = model
self.coverage_target = coverage_target
async def generate_tests(
self,
context: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 分析代码结构
structure = await self._analyze_structure(
context["ast"]
)
# 2. 识别测试点
test_points = await self._identify_test_points(
structure
)
# 3. 生成测试用例
test_cases = await self._generate_test_cases(
context,
test_points
)
# 4. 验证覆盖率
coverage = await self._verify_coverage(
test_cases,
context
)
return {
"test_cases": test_cases,
"coverage": coverage
}
async def _identify_test_points(
self,
structure: Dict[str, Any]
) -> List[Dict[str, Any]]:
points = []
# 1. 函数参数边界
points.extend(
self._get_parameter_boundaries(structure)
)
# 2. 条件分支覆盖
points.extend(
self._get_branch_conditions(structure)
)
# 3. 异常处理路径
points.extend(
self._get_exception_paths(structure)
)
return points
async def _generate_test_cases(
self,
context: Dict[str, Any],
test_points: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
test_cases = []
for point in test_points:
# 1. 构建测试场景
scenario = await self._build_scenario(
point,
context
)
# 2. 生成测试代码
test_code = await self.model.generate(
prompt=self._build_test_prompt(
scenario
),
temperature=0.2
)
# 3. 添加断言
test_code = await self._add_assertions(
test_code,
scenario
)
test_cases.append({
"point": point,
"scenario": scenario,
"code": test_code
})
return test_cases
文档生成功能
再来实现文档注释补全:
class DocumentGenerator:
def __init__(
self,
model: CodeLLM,
style_guide: Dict[str, Any]
):
self.model = model
self.style_guide = style_guide
async def generate_docs(
self,
context: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 分析代码结构
structure = await self._analyze_code(
context["ast"]
)
# 2. 提取关键信息
info = await self._extract_info(
structure,
context
)
# 3. 生成文档
docs = await self._generate_documentation(
info,
context["language"]
)
return {
"docs": docs,
"structure": structure,
"info": info
}
async def _extract_info(
self,
structure: Dict[str, Any],
context: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 提取函数信息
functions = await self._extract_functions(
structure
)
# 2. 提取类信息
classes = await self._extract_classes(
structure
)
# 3. 提取依赖关系
dependencies = await self._extract_dependencies(
context
)
return {
"functions": functions,
"classes": classes,
"dependencies": dependencies
}
async def _generate_documentation(
self,
info: Dict[str, Any],
language: str
) -> Dict[str, str]:
docs = {}
# 1. 生成函数文档
for func in info["functions"]:
docs[func["name"]] = await self._generate_function_doc(
func,
language
)
# 2. 生成类文档
for cls in info["classes"]:
docs[cls["name"]] = await self._generate_class_doc(
cls,
language
)
# 3. 生成模块文档
docs["module"] = await self._generate_module_doc(
info,
language
)
return docs
性能优化建议
最后是性能优化建议功能:
class PerformanceOptimizer:
def __init__(
self,
model: CodeLLM,
metrics: CodeMetrics
):
self.model = model
self.metrics = metrics
async def optimize(
self,
context: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 收集性能指标
metrics = await self._collect_metrics(
context
)
# 2. 识别瓶颈
bottlenecks = await self._identify_bottlenecks(
metrics
)
# 3. 生成优化建议
suggestions = await self._generate_suggestions(
context,
bottlenecks
)
return {
"metrics": metrics,
"bottlenecks": bottlenecks,
"suggestions": suggestions
}
async def _collect_metrics(
self,
context: Dict[str, Any]
) -> Dict[str, float]:
# 1. 复杂度指标
complexity = await self.metrics.calculate_complexity(
context["ast"]
)
# 2. 性能指标
performance = await self.metrics.measure_performance(
context["code_content"]
)
# 3. 内存指标
memory = await self.metrics.analyze_memory(
context["ast"]
)
return {
"complexity": complexity,
"performance": performance,
"memory": memory
}
async def _generate_suggestions(
self,
context: Dict[str, Any],
bottlenecks: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
suggestions = []
for bottleneck in bottlenecks:
# 1. 分析优化空间
potential = await self._analyze_potential(
bottleneck,
context
)
# 2. 生成优化方案
solution = await self.model.generate(
prompt=self._build_optimization_prompt(
bottleneck,
potential
),
temperature=0.2
)
# 3. 评估收益
benefits = await self._evaluate_benefits(
solution,
context
)
suggestions.append({
"bottleneck": bottleneck,
"solution": solution,
"benefits": benefits
})
return suggestions
实际效果
经过几个月的使用,这个代码助手给团队带来了明显的收益:
代码审查效率提升
- 常规问题自动发现
- 审查时间减少40%
- 代码质量明显提升
测试覆盖率提高
- 测试用例更全面
- 覆盖率提升30%
- Bug发现更及时
文档质量改善
- 文档更新更及时
- 注释更加规范
- 可维护性提升
实践心得
在开发这个代码助手的过程中,我总结了几点经验:
场景要聚焦
- 从最痛点开始
- 循序渐进扩展
- 持续收集反馈
体验要顺滑
- 响应要快速
- 建议要准确
- 集成要便捷
可靠性要高
- 异常要处理
- 结果要验证
- 性能要稳定
写在最后
一个好的代码助手不仅要懂代码,还要理解开发者的需求和习惯。它就像一个经验丰富的老程序员,在你需要的时候给出恰到好处的建议。
在下一篇文章中,我会讲解如何开发一个智能客服Agent。如果你对代码助手的开发有什么想法,欢迎在评论区交流。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。