在上一篇文章中,我们讨论了如何构建一个运维助手Agent。今天,我想分享另一个实际项目:如何构建一个测试助手Agent。这个项目源于我们一个大型互联网公司的真实需求 - 提升测试效率,保障产品质量。

从测试痛点说起

记得和测试团队讨论时的场景:

小张:每次新功能上线都要写很多测试用例,很耗时
小李:是啊,而且回归测试也很繁琐
我:主要是哪些测试场景?
小张:接口测试、UI测试、性能测试这些
我:这些场景很适合用AI Agent来协助

经过需求分析,我们确定了几个核心功能:

  1. 测试用例生成
  2. 自动化测试
  3. 缺陷分析
  4. 测试报告生成

技术方案设计

首先是整体架构:

from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncio

class TestTask(Enum):
    CASE = "case"
    AUTOMATE = "automate"
    ANALYZE = "analyze"
    REPORT = "report"

class TestContext(BaseModel):
    task_type: TestTask
    project_info: Dict[str, Any]
    code_changes: Optional[Dict[str, Any]]
    test_history: Optional[List[Dict[str, Any]]]
    
class TestAssistant:
    def __init__(
        self,
        config: Dict[str, Any]
    ):
        # 1. 初始化测试模型
        self.test_model = TestLLM(
            model="gpt-4",
            temperature=0.2,
            context_length=8000
        )
        
        # 2. 初始化工具集
        self.tools = {
            "generator": CaseGenerator(),
            "automator": TestAutomator(),
            "analyzer": DefectAnalyzer(),
            "reporter": ReportGenerator()
        }
        
        # 3. 初始化知识库
        self.knowledge_base = VectorStore(
            embeddings=TestEmbeddings(),
            collection="test_knowledge"
        )
        
    async def process_task(
        self,
        context: TestContext
    ) -> Dict[str, Any]:
        # 1. 分析任务
        task_info = await self._analyze_task(
            context
        )
        
        # 2. 准备数据
        data = await self._prepare_data(
            context,
            task_info
        )
        
        # 3. 生成方案
        plan = await self._generate_plan(
            task_info,
            data
        )
        
        # 4. 执行任务
        result = await self._execute_task(
            plan,
            context
        )
        
        return result
        
    async def _analyze_task(
        self,
        context: TestContext
    ) -> Dict[str, Any]:
        # 1. 识别任务类型
        task_type = await self._identify_task_type(
            context.task_type
        )
        
        # 2. 评估优先级
        priority = await self._evaluate_priority(
            context
        )
        
        # 3. 确定策略
        strategy = await self._determine_strategy(
            task_type,
            priority
        )
        
        return {
            "type": task_type,
            "priority": priority,
            "strategy": strategy
        }

用例生成功能

首先实现测试用例生成功能:

class CaseGenerator:
    def __init__(
        self,
        model: TestLLM
    ):
        self.model = model
        
    async def generate_cases(
        self,
        context: TestContext
    ) -> Dict[str, Any]:
        # 1. 分析需求
        requirements = await self._analyze_requirements(
            context
        )
        
        # 2. 设计用例
        cases = await self._design_cases(
            requirements
        )
        
        # 3. 优化用例
        optimized = await self._optimize_cases(
            cases,
            context
        )
        
        return optimized
        
    async def _analyze_requirements(
        self,
        context: TestContext
    ) -> Dict[str, Any]:
        # 1. 提取功能点
        features = await self._extract_features(
            context.project_info
        )
        
        # 2. 识别测试点
        test_points = await self._identify_test_points(
            features
        )
        
        # 3. 确定测试策略
        strategy = await self._determine_test_strategy(
            test_points
        )
        
        return {
            "features": features,
            "test_points": test_points,
            "strategy": strategy
        }
        
    async def _design_cases(
        self,
        requirements: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        cases = []
        
        for point in requirements["test_points"]:
            # 1. 设计测试场景
            scenario = await self._design_scenario(
                point
            )
            
            # 2. 生成测试步骤
            steps = await self._generate_steps(
                scenario
            )
            
            # 3. 添加验证点
            verifications = await self._add_verifications(
                steps,
                point
            )
            
            cases.append({
                "scenario": scenario,
                "steps": steps,
                "verifications": verifications
            })
            
        return cases

自动化测试功能

接下来是自动化测试功能:

class TestAutomator:
    def __init__(
        self,
        model: TestLLM
    ):
        self.model = model
        
    async def automate_tests(
        self,
        context: TestContext,
        cases: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        # 1. 准备环境
        env = await self._prepare_environment(
            context
        )
        
        # 2. 生成脚本
        scripts = await self._generate_scripts(
            cases,
            env
        )
        
        # 3. 执行测试
        results = await self._execute_tests(
            scripts,
            env
        )
        
        return results
        
    async def _generate_scripts(
        self,
        cases: List[Dict[str, Any]],
        env: Dict[str, Any]
    ) -> Dict[str, Any]:
        scripts = {}
        
        # 1. 生成测试框架
        framework = await self._setup_framework(
            env
        )
        
        # 2. 转换测试用例
        for case in cases:
            script = await self._convert_to_script(
                case,
                framework
            )
            scripts[case["id"]] = script
            
        # 3. 添加通用功能
        common = await self._add_common_functions(
            framework
        )
        scripts["common"] = common
        
        return scripts
        
    async def _execute_tests(
        self,
        scripts: Dict[str, Any],
        env: Dict[str, Any]
    ) -> Dict[str, Any]:
        results = {}
        
        # 1. 初始化执行器
        executor = await self._init_executor(
            env
        )
        
        # 2. 执行测试脚本
        for case_id, script in scripts.items():
            if case_id != "common":
                result = await executor.run(
                    script,
                    scripts["common"]
                )
                results[case_id] = result
                
        # 3. 收集结果
        summary = await self._collect_results(
            results
        )
        
        return {
            "results": results,
            "summary": summary
        }

缺陷分析功能

再来实现缺陷分析功能:

class DefectAnalyzer:
    def __init__(
        self,
        model: TestLLM
    ):
        self.model = model
        
    async def analyze_defects(
        self,
        context: TestContext,
        test_results: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 收集数据
        data = await self._collect_data(
            context,
            test_results
        )
        
        # 2. 分析缺陷
        analysis = await self._analyze_defects(
            data
        )
        
        # 3. 生成建议
        suggestions = await self._generate_suggestions(
            analysis
        )
        
        return suggestions
        
    async def _analyze_defects(
        self,
        data: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 分类缺陷
        categories = await self._categorize_defects(
            data["failures"]
        )
        
        # 2. 定位根因
        root_causes = await self._identify_root_causes(
            categories,
            data
        )
        
        # 3. 评估影响
        impact = await self._evaluate_impact(
            root_causes,
            data["project_info"]
        )
        
        return {
            "categories": categories,
            "root_causes": root_causes,
            "impact": impact
        }
        
    async def _generate_suggestions(
        self,
        analysis: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 修复建议
        fixes = await self._suggest_fixes(
            analysis["root_causes"]
        )
        
        # 2. 预防措施
        preventions = await self._suggest_preventions(
            analysis["categories"]
        )
        
        # 3. 改进建议
        improvements = await self._suggest_improvements(
            analysis
        )
        
        return {
            "fixes": fixes,
            "preventions": preventions,
            "improvements": improvements
        }

报告生成功能

最后是测试报告生成功能:

class ReportGenerator:
    def __init__(
        self,
        model: TestLLM
    ):
        self.model = model
        
    async def generate_report(
        self,
        context: TestContext,
        test_results: Dict[str, Any],
        analysis: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 收集数据
        data = await self._collect_data(
            context,
            test_results,
            analysis
        )
        
        # 2. 生成报告
        report = await self._generate_content(
            data
        )
        
        # 3. 格式化报告
        formatted = await self._format_report(
            report
        )
        
        return formatted
        
    async def _generate_content(
        self,
        data: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 生成摘要
        summary = await self._generate_summary(
            data
        )
        
        # 2. 生成详情
        details = await self._generate_details(
            data
        )
        
        # 3. 生成建议
        recommendations = await self._generate_recommendations(
            data
        )
        
        return {
            "summary": summary,
            "details": details,
            "recommendations": recommendations
        }
        
    async def _format_report(
        self,
        report: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 添加图表
        charts = await self._add_charts(
            report
        )
        
        # 2. 格式化文档
        document = await self._format_document(
            report,
            charts
        )
        
        # 3. 生成导出
        exports = await self._generate_exports(
            document
        )
        
        return {
            "document": document,
            "charts": charts,
            "exports": exports
        }

实际效果

经过两个月的使用,这个测试助手Agent带来了显著的改善:

  1. 效率提升

    • 用例生成效率提升70%
    • 自动化覆盖率提高50%
    • 报告生成时间减少80%
  2. 质量改善

    • 测试更全面
    • 缺陷发现更早
    • 分析更深入
  3. 成本优化

    • 人力投入减少
    • 测试周期缩短
    • 资源利用更优

实践心得

在开发这个测试助手Agent的过程中,我总结了几点经验:

  1. 场景驱动

    • 关注重点场景
    • 分步骤实现
    • 持续优化
  2. 数据支撑

    • 收集测试数据
    • 分析改进点
    • 量化效果
  3. 工具协同

    • 工具要集成
    • 流程要打通
    • 反馈要及时

写在最后

一个好的测试助手Agent不仅要能生成测试用例,更要理解测试的本质,帮助测试团队提升测试效率和质量。它就像一个经验丰富的测试专家,在合适的时候给出恰当的建议。

在下一篇文章中,我会讲解如何开发一个翻译助手Agent。如果你对测试助手Agent的开发有什么想法,欢迎在评论区交流。


远洋录
3 声望2 粉丝