在上一篇文章中,我们讨论了如何构建一个写作助手Agent。今天,我想分享另一个实际项目:如何构建一个产品助手Agent。这个项目源于我们一个产品团队的真实需求 - 提升产品效率,保障产品质量。
从产品痛点说起
记得和产品团队讨论时的场景:
小王:每天要处理很多需求分析和产品设计的工作
小李:是啊,而且用户反馈和竞品分析也很耗时
我:主要是哪些产品场景?
小王:需求分析、原型设计、竞品分析这些
我:这些场景很适合用AI Agent来协助
经过需求分析,我们确定了几个核心功能:
- 需求管理
- 原型设计
- 竞品分析
- 用户研究
技术方案设计
首先是整体架构:
from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncio
class ProductTask(Enum):
REQUIREMENT = "requirement"
PROTOTYPE = "prototype"
COMPETITOR = "competitor"
RESEARCH = "research"
class ProductContext(BaseModel):
task_type: ProductTask
project_info: Dict[str, Any]
user_info: Optional[Dict[str, Any]]
market_info: Optional[Dict[str, Any]]
history: Optional[List[Dict[str, Any]]]
class ProductAssistant:
def __init__(
self,
config: Dict[str, Any]
):
# 1. 初始化产品模型
self.product_model = ProductLLM(
model="gpt-4",
temperature=0.3,
context_length=8000
)
# 2. 初始化工具集
self.tools = {
"requirement": RequirementManager(),
"prototype": PrototypeDesigner(),
"competitor": CompetitorAnalyzer(),
"researcher": UserResearcher()
}
# 3. 初始化知识库
self.knowledge_base = VectorStore(
embeddings=ProductEmbeddings(),
collection="product_knowledge"
)
async def process_task(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 分析任务
task_info = await self._analyze_task(
context
)
# 2. 准备资源
resources = await self._prepare_resources(
context,
task_info
)
# 3. 生成方案
plan = await self._generate_plan(
task_info,
resources
)
# 4. 执行任务
result = await self._execute_task(
plan,
context
)
return result
async def _analyze_task(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 识别任务类型
task_type = await self._identify_task_type(
context.task_type
)
# 2. 评估复杂度
complexity = await self._evaluate_complexity(
context
)
# 3. 确定策略
strategy = await self._determine_strategy(
task_type,
complexity
)
return {
"type": task_type,
"complexity": complexity,
"strategy": strategy
}
需求管理功能
首先实现需求管理功能:
class RequirementManager:
def __init__(
self,
model: ProductLLM
):
self.model = model
async def manage_requirement(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 分析需求
analysis = await self._analyze_requirement(
context
)
# 2. 拆分需求
breakdown = await self._breakdown_requirement(
analysis
)
# 3. 优化需求
optimized = await self._optimize_requirement(
breakdown,
context
)
return optimized
async def _analyze_requirement(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 提取关键信息
key_info = await self._extract_key_info(
context.project_info
)
# 2. 分析可行性
feasibility = await self._analyze_feasibility(
key_info
)
# 3. 评估价值
value = await self._evaluate_value(
key_info,
context
)
return {
"key_info": key_info,
"feasibility": feasibility,
"value": value
}
async def _breakdown_requirement(
self,
analysis: Dict[str, Any]
) -> List[Dict[str, Any]]:
requirements = []
# 1. 功能拆分
features = await self._breakdown_features(
analysis["key_info"]
)
# 2. 场景拆分
scenarios = await self._breakdown_scenarios(
features
)
# 3. 任务拆分
tasks = await self._breakdown_tasks(
scenarios
)
for task in tasks:
requirement = {
"task": task,
"features": features,
"scenarios": scenarios
}
requirements.append(requirement)
return requirements
原型设计功能
接下来是原型设计功能:
class PrototypeDesigner:
def __init__(
self,
model: ProductLLM
):
self.model = model
async def design_prototype(
self,
context: ProductContext,
requirements: List[Dict[str, Any]]
) -> Dict[str, Any]:
# 1. 分析需求
analysis = await self._analyze_requirements(
requirements
)
# 2. 设计原型
prototype = await self._design_prototype(
analysis,
context
)
# 3. 优化交互
optimized = await self._optimize_interaction(
prototype,
context
)
return optimized
async def _analyze_requirements(
self,
requirements: List[Dict[str, Any]]
) -> Dict[str, Any]:
# 1. 提取交互点
interactions = await self._extract_interactions(
requirements
)
# 2. 分析流程
flows = await self._analyze_flows(
interactions
)
# 3. 确定布局
layouts = await self._determine_layouts(
flows
)
return {
"interactions": interactions,
"flows": flows,
"layouts": layouts
}
async def _design_prototype(
self,
analysis: Dict[str, Any],
context: ProductContext
) -> Dict[str, Any]:
# 1. 设计页面
pages = await self._design_pages(
analysis["layouts"]
)
# 2. 设计组件
components = await self._design_components(
analysis["interactions"]
)
# 3. 设计交互
interactions = await self._design_interactions(
analysis["flows"]
)
return {
"pages": pages,
"components": components,
"interactions": interactions
}
竞品分析功能
再来实现竞品分析功能:
class CompetitorAnalyzer:
def __init__(
self,
model: ProductLLM
):
self.model = model
async def analyze_competitor(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 收集数据
data = await self._collect_data(
context
)
# 2. 分析竞品
analysis = await self._analyze_competitor(
data
)
# 3. 生成报告
report = await self._generate_report(
analysis,
context
)
return report
async def _collect_data(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 市场数据
market = await self._collect_market_data(
context.market_info
)
# 2. 产品数据
product = await self._collect_product_data(
context.market_info
)
# 3. 用户数据
user = await self._collect_user_data(
context.market_info
)
return {
"market": market,
"product": product,
"user": user
}
async def _analyze_competitor(
self,
data: Dict[str, Any]
) -> Dict[str, Any]:
# 1. 功能分析
features = await self._analyze_features(
data["product"]
)
# 2. 优势分析
advantages = await self._analyze_advantages(
data
)
# 3. 策略分析
strategies = await self._analyze_strategies(
data,
features,
advantages
)
return {
"features": features,
"advantages": advantages,
"strategies": strategies
}
用户研究功能
最后是用户研究功能:
class UserResearcher:
def __init__(
self,
model: ProductLLM
):
self.model = model
async def conduct_research(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 设计研究
design = await self._design_research(
context
)
# 2. 收集数据
data = await self._collect_data(
design
)
# 3. 分析结果
results = await self._analyze_results(
data,
context
)
return results
async def _design_research(
self,
context: ProductContext
) -> Dict[str, Any]:
# 1. 确定目标
objectives = await self._define_objectives(
context
)
# 2. 设计方法
methods = await self._design_methods(
objectives
)
# 3. 制定计划
plan = await self._create_plan(
methods
)
return {
"objectives": objectives,
"methods": methods,
"plan": plan
}
async def _analyze_results(
self,
data: Dict[str, Any],
context: ProductContext
) -> Dict[str, Any]:
# 1. 数据分析
analysis = await self._analyze_data(
data
)
# 2. 洞察提取
insights = await self._extract_insights(
analysis
)
# 3. 建议生成
recommendations = await self._generate_recommendations(
insights,
context
)
return {
"analysis": analysis,
"insights": insights,
"recommendations": recommendations
}
实际效果
经过三个月的使用,这个产品助手Agent带来了显著的改善:
效率提升
- 需求分析更快
- 原型设计更高效
- 决策更准确
质量改善
- 需求更清晰
- 设计更合理
- 分析更深入
体验优化
- 协作更顺畅
- 沟通更便捷
- 迭代更快速
实践心得
在开发这个产品助手Agent的过程中,我总结了几点经验:
用户为本
- 理解用户需求
- 关注用户体验
- 持续收集反馈
数据驱动
- 重视数据分析
- 量化决策依据
- 持续优化迭代
协同高效
- 促进团队协作
- 提升沟通效率
- 加快决策速度
写在最后
一个好的产品助手Agent不仅要能处理日常工作,更要理解产品的本质,帮助产品团队做出更好的决策。它就像一个经验丰富的产品专家,在合适的时候给出恰当的建议。
在下一篇文章中,我会讲解如何开发一个销售助手Agent。如果你对产品助手Agent的开发有什么想法,欢迎在评论区交流。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。