在上一篇文章中,我们讨论了如何构建一个写作助手Agent。今天,我想分享另一个实际项目:如何构建一个产品助手Agent。这个项目源于我们一个产品团队的真实需求 - 提升产品效率,保障产品质量。

从产品痛点说起

记得和产品团队讨论时的场景:

小王:每天要处理很多需求分析和产品设计的工作
小李:是啊,而且用户反馈和竞品分析也很耗时
我:主要是哪些产品场景?
小王:需求分析、原型设计、竞品分析这些
我:这些场景很适合用AI Agent来协助

经过需求分析,我们确定了几个核心功能:

  1. 需求管理
  2. 原型设计
  3. 竞品分析
  4. 用户研究

技术方案设计

首先是整体架构:

from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncio

class ProductTask(Enum):
    REQUIREMENT = "requirement"
    PROTOTYPE = "prototype"
    COMPETITOR = "competitor"
    RESEARCH = "research"

class ProductContext(BaseModel):
    task_type: ProductTask
    project_info: Dict[str, Any]
    user_info: Optional[Dict[str, Any]]
    market_info: Optional[Dict[str, Any]]
    history: Optional[List[Dict[str, Any]]]
    
class ProductAssistant:
    def __init__(
        self,
        config: Dict[str, Any]
    ):
        # 1. 初始化产品模型
        self.product_model = ProductLLM(
            model="gpt-4",
            temperature=0.3,
            context_length=8000
        )
        
        # 2. 初始化工具集
        self.tools = {
            "requirement": RequirementManager(),
            "prototype": PrototypeDesigner(),
            "competitor": CompetitorAnalyzer(),
            "researcher": UserResearcher()
        }
        
        # 3. 初始化知识库
        self.knowledge_base = VectorStore(
            embeddings=ProductEmbeddings(),
            collection="product_knowledge"
        )
        
    async def process_task(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 分析任务
        task_info = await self._analyze_task(
            context
        )
        
        # 2. 准备资源
        resources = await self._prepare_resources(
            context,
            task_info
        )
        
        # 3. 生成方案
        plan = await self._generate_plan(
            task_info,
            resources
        )
        
        # 4. 执行任务
        result = await self._execute_task(
            plan,
            context
        )
        
        return result
        
    async def _analyze_task(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 识别任务类型
        task_type = await self._identify_task_type(
            context.task_type
        )
        
        # 2. 评估复杂度
        complexity = await self._evaluate_complexity(
            context
        )
        
        # 3. 确定策略
        strategy = await self._determine_strategy(
            task_type,
            complexity
        )
        
        return {
            "type": task_type,
            "complexity": complexity,
            "strategy": strategy
        }

需求管理功能

首先实现需求管理功能:

class RequirementManager:
    def __init__(
        self,
        model: ProductLLM
    ):
        self.model = model
        
    async def manage_requirement(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 分析需求
        analysis = await self._analyze_requirement(
            context
        )
        
        # 2. 拆分需求
        breakdown = await self._breakdown_requirement(
            analysis
        )
        
        # 3. 优化需求
        optimized = await self._optimize_requirement(
            breakdown,
            context
        )
        
        return optimized
        
    async def _analyze_requirement(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 提取关键信息
        key_info = await self._extract_key_info(
            context.project_info
        )
        
        # 2. 分析可行性
        feasibility = await self._analyze_feasibility(
            key_info
        )
        
        # 3. 评估价值
        value = await self._evaluate_value(
            key_info,
            context
        )
        
        return {
            "key_info": key_info,
            "feasibility": feasibility,
            "value": value
        }
        
    async def _breakdown_requirement(
        self,
        analysis: Dict[str, Any]
    ) -> List[Dict[str, Any]]:
        requirements = []
        
        # 1. 功能拆分
        features = await self._breakdown_features(
            analysis["key_info"]
        )
        
        # 2. 场景拆分
        scenarios = await self._breakdown_scenarios(
            features
        )
        
        # 3. 任务拆分
        tasks = await self._breakdown_tasks(
            scenarios
        )
        
        for task in tasks:
            requirement = {
                "task": task,
                "features": features,
                "scenarios": scenarios
            }
            requirements.append(requirement)
            
        return requirements

原型设计功能

接下来是原型设计功能:

class PrototypeDesigner:
    def __init__(
        self,
        model: ProductLLM
    ):
        self.model = model
        
    async def design_prototype(
        self,
        context: ProductContext,
        requirements: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        # 1. 分析需求
        analysis = await self._analyze_requirements(
            requirements
        )
        
        # 2. 设计原型
        prototype = await self._design_prototype(
            analysis,
            context
        )
        
        # 3. 优化交互
        optimized = await self._optimize_interaction(
            prototype,
            context
        )
        
        return optimized
        
    async def _analyze_requirements(
        self,
        requirements: List[Dict[str, Any]]
    ) -> Dict[str, Any]:
        # 1. 提取交互点
        interactions = await self._extract_interactions(
            requirements
        )
        
        # 2. 分析流程
        flows = await self._analyze_flows(
            interactions
        )
        
        # 3. 确定布局
        layouts = await self._determine_layouts(
            flows
        )
        
        return {
            "interactions": interactions,
            "flows": flows,
            "layouts": layouts
        }
        
    async def _design_prototype(
        self,
        analysis: Dict[str, Any],
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 设计页面
        pages = await self._design_pages(
            analysis["layouts"]
        )
        
        # 2. 设计组件
        components = await self._design_components(
            analysis["interactions"]
        )
        
        # 3. 设计交互
        interactions = await self._design_interactions(
            analysis["flows"]
        )
        
        return {
            "pages": pages,
            "components": components,
            "interactions": interactions
        }

竞品分析功能

再来实现竞品分析功能:

class CompetitorAnalyzer:
    def __init__(
        self,
        model: ProductLLM
    ):
        self.model = model
        
    async def analyze_competitor(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 收集数据
        data = await self._collect_data(
            context
        )
        
        # 2. 分析竞品
        analysis = await self._analyze_competitor(
            data
        )
        
        # 3. 生成报告
        report = await self._generate_report(
            analysis,
            context
        )
        
        return report
        
    async def _collect_data(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 市场数据
        market = await self._collect_market_data(
            context.market_info
        )
        
        # 2. 产品数据
        product = await self._collect_product_data(
            context.market_info
        )
        
        # 3. 用户数据
        user = await self._collect_user_data(
            context.market_info
        )
        
        return {
            "market": market,
            "product": product,
            "user": user
        }
        
    async def _analyze_competitor(
        self,
        data: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 功能分析
        features = await self._analyze_features(
            data["product"]
        )
        
        # 2. 优势分析
        advantages = await self._analyze_advantages(
            data
        )
        
        # 3. 策略分析
        strategies = await self._analyze_strategies(
            data,
            features,
            advantages
        )
        
        return {
            "features": features,
            "advantages": advantages,
            "strategies": strategies
        }

用户研究功能

最后是用户研究功能:

class UserResearcher:
    def __init__(
        self,
        model: ProductLLM
    ):
        self.model = model
        
    async def conduct_research(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 设计研究
        design = await self._design_research(
            context
        )
        
        # 2. 收集数据
        data = await self._collect_data(
            design
        )
        
        # 3. 分析结果
        results = await self._analyze_results(
            data,
            context
        )
        
        return results
        
    async def _design_research(
        self,
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 确定目标
        objectives = await self._define_objectives(
            context
        )
        
        # 2. 设计方法
        methods = await self._design_methods(
            objectives
        )
        
        # 3. 制定计划
        plan = await self._create_plan(
            methods
        )
        
        return {
            "objectives": objectives,
            "methods": methods,
            "plan": plan
        }
        
    async def _analyze_results(
        self,
        data: Dict[str, Any],
        context: ProductContext
    ) -> Dict[str, Any]:
        # 1. 数据分析
        analysis = await self._analyze_data(
            data
        )
        
        # 2. 洞察提取
        insights = await self._extract_insights(
            analysis
        )
        
        # 3. 建议生成
        recommendations = await self._generate_recommendations(
            insights,
            context
        )
        
        return {
            "analysis": analysis,
            "insights": insights,
            "recommendations": recommendations
        }

实际效果

经过三个月的使用,这个产品助手Agent带来了显著的改善:

  1. 效率提升

    • 需求分析更快
    • 原型设计更高效
    • 决策更准确
  2. 质量改善

    • 需求更清晰
    • 设计更合理
    • 分析更深入
  3. 体验优化

    • 协作更顺畅
    • 沟通更便捷
    • 迭代更快速

实践心得

在开发这个产品助手Agent的过程中,我总结了几点经验:

  1. 用户为本

    • 理解用户需求
    • 关注用户体验
    • 持续收集反馈
  2. 数据驱动

    • 重视数据分析
    • 量化决策依据
    • 持续优化迭代
  3. 协同高效

    • 促进团队协作
    • 提升沟通效率
    • 加快决策速度

写在最后

一个好的产品助手Agent不仅要能处理日常工作,更要理解产品的本质,帮助产品团队做出更好的决策。它就像一个经验丰富的产品专家,在合适的时候给出恰当的建议。

在下一篇文章中,我会讲解如何开发一个销售助手Agent。如果你对产品助手Agent的开发有什么想法,欢迎在评论区交流。


远洋录
3 声望2 粉丝