【GreatSQL优化器-17】DYNAMIC RANGE

一、DYNAMIC RANGE介绍

GreatSQL 的优化器有一种扫描方式是动态范围扫描方式,类似于“已读乱回”模式,这种模式是在表有多个索引的情况下,对驱动表连接的时候部分选择索引的情况。优化器没有找到好的索引可以使用,但发现在知道前面表的列值后,可能会使用某些索引。对于前面表中的每个行组合,优化器检查是否可以使用 range 或 index merge 访问方法来检索行。虽然这不是很快,但比执行完全没有索引的连接要快。

下面用一个简单的例子来说明直方图怎么应用在优化器。

CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 INT,date1 DATETIME);
INSERT INTO t1 VALUES (1,10,'2021-03-25 16:44:00.123456'),(2,1,'2022-03-26 16:44:00.123456'),(3,4,'2023-03-27 16:44:00.123456'),(5,5,'2024-03-25 16:44:00.123456'),(7,null,'2020-03-25 16:44:00.123456'),(8,10,'2020-10-25 16:44:00.123456'),(11,16,'2023-03-25 16:44:00.123456');
CREATE TABLE t2 (cc1 INT PRIMARY KEY, cc2 INT);
INSERT INTO t2 VALUES (1,3),(2,1),(3,2),(4,3),(5,15);
CREATE TABLE t3 (ccc1 INT, ccc2 varchar(100));
INSERT INTO t3 VALUES (1,'aa1'),(2,'bb1'),(3,'cc1'),(4,'dd1'),(null,'ee');
CREATE INDEX idx1 ON t1(c2);
CREATE INDEX idx2 ON t1(c2,date1);
CREATE INDEX idx2_1 ON t2(cc2);
CREATE INDEX idx3_1 ON t3(ccc1);

greatsql> EXPLAIN SELECT * FROM t1 join t3 ON t1.c1=t3.ccc1 or t1.c2<5;
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys     | key  | key_len | ref  | rows | filtered | Extra                                          |
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
|  1 | SIMPLE      | t3    | NULL       | ALL  | idx3_1            | NULL | NULL    | NULL |    5 |   100.00 | NULL                                           |
|  1 | SIMPLE      | t1    | NULL       | ALL  | PRIMARY,idx1,idx2 | NULL | NULL    | NULL |    7 |    43.67 | Range checked for each record (index map: 0x7) |
-- 这里的结果出现了Range checked,说明进行了DYNAMIC_RANGE
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+

greatsql> SELECT * FROM t1 join t3 ON t1.c1=t3.ccc1 or t1.c2<5;
+----+------+---------------------+------+------+
| c1 | c2   | date1               | ccc1 | ccc2 |
+----+------+---------------------+------+------+
|  1 |   10 | 2021-03-25 16:44:00 |    1 | aa1  |
|  2 |    1 | 2022-03-26 16:44:00 |    1 | aa1  |
|  3 |    4 | 2023-03-27 16:44:00 |    1 | aa1  |
|  2 |    1 | 2022-03-26 16:44:00 |    2 | bb1  |
|  3 |    4 | 2023-03-27 16:44:00 |    2 | bb1  |
|  2 |    1 | 2022-03-26 16:44:00 |    3 | cc1  |
|  3 |    4 | 2023-03-27 16:44:00 |    3 | cc1  |
|  2 |    1 | 2022-03-26 16:44:00 |    4 | dd1  |
|  3 |    4 | 2023-03-27 16:44:00 |    4 | dd1  |
|  2 |    1 | 2022-03-26 16:44:00 | NULL | ee   |
|  3 |    4 | 2023-03-27 16:44:00 | NULL | ee   |
+----+------+---------------------+------+------+

greatsql> SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
             "attaching_conditions_to_tables": {
              "original_condition": "((`t1`.`c1` = `t3`.`ccc1`) or (`t1`.`c2` < 5))",
              "attached_conditions_computation": [
                {
                  "table": "`t1`",
                  "rechecking_index_usage": { -- 这里对t1进行了recheck
                    "recheck_reason": "not_first_table",
                    "range_analysis": {
                      "table_scan": {
                        "rows": 7,
                        "cost": 3.05
                      },
                      "potential_range_indexes": [
                        {
                          "index": "PRIMARY",
                          "usable": true,
                          "key_parts": [
                            "c1"
                          ]
                        },
                        {
                          "index": "idx1",
                          "usable": true,
                          "key_parts": [
                            "c2",
                            "c1"
                          ]
                        },
                        {
                          "index": "idx2",
                          "usable": true,
                          "key_parts": [
                            "c2",
                            "date1",
                            "c1"
                          ]
                        }
                      ],
                      "best_covering_index_scan": {
                        "index": "idx2",
                        "cost": 0.952742,
                        "chosen": true
                      },
                      "setup_range_conditions": [
                      ],
                      "group_index_range": {
                        "chosen": false,
                        "cause": "not_single_table"
                      },
                      "skip_scan_range": {
                        "chosen": false,
                        "cause": "not_single_table"
                      },
                      "analyzing_range_alternatives": {
                        "range_scan_alternatives": [
                        ],
                        "analyzing_roworder_intersect": {
                          "usable": false,
                          "cause": "too_few_roworder_scans"
                        }
                      },
                      "analyzing_index_merge_union": [
                        {
                          "indexes_to_merge": [
                            {
                              "range_scan_alternatives": [
                                {
                                  "index": "PRIMARY",
                                  "chosen": false,
                                  "cause": "depends_on_unread_values"
                                }
                              ],
                              "chosen": false,
                              "cause": "cost"
                            },
                            {
                              "range_scan_alternatives": [
                                {
                                  "index": "idx1",
                                  "ranges": [
                                    "NULL < c2 < 5"
                                  ],
                                  "index_dives_for_eq_ranges": true,
                                  "rowid_ordered": false,
                                  "using_mrr": false,
                                  "index_only": true,
                                  "in_memory": 1,
                                  "rows": 2,
                                  "cost": 0.460274,
                                  "chosen": true
                                },
                                {
                                  "index": "idx2",
                                  "ranges": [
                                    "NULL < c2 < 5"
                                  ],
                                  "index_dives_for_eq_ranges": true,
                                  "rowid_ordered": false,
                                  "using_mrr": false,
                                  "index_only": true,
                                  "in_memory": 1,
                                  "rows": 2,
                                  "cost": 0.460457,
                                  "chosen": false,
                                  "cause": "cost"
                                }
                              ],
                              "chosen": false,
                              "cause": "cost"
                            }
                          ],
                          "cost_of_reading_ranges": 0,
                          "chosen": false,
                          "cause": "cost"
                        }
                      ]
                    }
                  }
                }
              ],
              "attached_conditions_summary": [
                {
                  "table": "`t3`",
                  "attached": null
                },
                {
                  "table": "`t1`",
                  "attached": "((`t1`.`c1` = `t3`.`ccc1`) or (`t1`.`c2` < 5))"
                }
              ]
            }
     "join_execution": {
        "select#": 1,
        "steps": [
          {
            "rows_estimation_per_outer_row": { -- 这里只截取t3读第一行时候t1的索引选择
              "table": "`t1`",
              "range_analysis": {
                "table_scan": {
                  "rows": 7,
                  "cost": 3.05
                },
                "potential_range_indexes": [
                  {
                    "index": "PRIMARY",
                    "usable": true,
                    "key_parts": [
                      "c1"
                    ]
                  },
                  {
                    "index": "idx1",
                    "usable": true,
                    "key_parts": [
                      "c2",
                      "c1"
                    ]
                  },
                  {
                    "index": "idx2",
                    "usable": true,
                    "key_parts": [
                      "c2",
                      "date1",
                      "c1"
                    ]
                  }
                ],
                "best_covering_index_scan": {
                  "index": "idx2",
                  "cost": 0.952742,
                  "chosen": true
                },
                "setup_range_conditions": [
                ],
                "group_index_range": {
                  "chosen": false,
                  "cause": "not_single_table"
                },
                "skip_scan_range": {
                  "chosen": false,
                  "cause": "not_single_table"
                },
                "analyzing_range_alternatives": {
                  "range_scan_alternatives": [
                  ],
                  "analyzing_roworder_intersect": {
                    "usable": false,
                    "cause": "too_few_roworder_scans"
                  }
                },
                "analyzing_index_merge_union": [
                  {
                    "indexes_to_merge": [
                      {
                        "range_scan_alternatives": [
                          {
                            "index": "PRIMARY",
                            "ranges": [
                              "c1 = 1"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": true,
                            "using_mrr": false,
                            "index_only": true,
                            "in_memory": 1,
                            "rows": 1,
                            "cost": 0.36,
                            "chosen": true
                          }
                        ],
                        "index_to_merge": "PRIMARY",
                        "cumulated_cost": 0.36
                      },
                      {
                        "range_scan_alternatives": [
                          {
                            "index": "idx1",
                            "ranges": [
                              "NULL < c2 < 5"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": false,
                            "using_mrr": false,
                            "index_only": true,
                            "in_memory": 1,
                            "rows": 2,
                            "cost": 0.460274,
                            "chosen": true
                          },
                          {
                            "index": "idx2",
                            "ranges": [
                              "NULL < c2 < 5"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": false,
                            "using_mrr": false,
                            "index_only": true,
                            "in_memory": 1,
                            "rows": 2,
                            "cost": 0.460457,
                            "chosen": false,
                            "cause": "cost"
                          }
                        ],
                        "index_to_merge": "idx1",
                        "cumulated_cost": 0.820274
                      }
                    ],
                    "cost_of_reading_ranges": 0.820274,
                    "cost_of_mapping_rowid_in_non_clustered_pk_scan": 0.1,
                    "cost_sort_rowid_and_read_disk": 0.4375,
                    "use_roworder_index_merge": true, -- 根据上面结果选择了主键合并idx1的结果
                    "cause": "cost"
                  }
                ]
              }
            }
          },

greatsql> EXPLAIN SELECT * FROM t1 join t3 ON t1.c1=t3.ccc1 or t1.c2<5;
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys     | key  | key_len | ref  | rows | filtered | Extra                                          |
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
|  1 | SIMPLE      | t3    | NULL       | ALL  | idx3_1            | NULL | NULL    | NULL |    5 |   100.00 | NULL                                           |
|  1 | SIMPLE      | t1    | NULL       | ALL  | PRIMARY,idx1,idx2 | NULL | NULL    | NULL |    7 |    42.85 | Range checked for each record (index map: 0x7) | -- 这里0x7指的是t1表的3条索引
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+

-- 驱动表t3一共5条数据,每行记录都进行了一次test_quick_select()来查找t1是否有可用的更优索引

详细DYNAMIC RANGE执行过程如下表所示

t3.ccc1t1全表扫描costt1索引uniont1索引sort-union的costt1联合索引idx2t1范围扫描结果
13.8排序[PRIMARY,idx1,idx2], idx2加进去的cost太大放弃1.580271.71097PRIMARY,idx1索引合并
23.8排序[PRIMARY,idx1,idx2], idx2的cost太大放弃1.580271.71097PRIMARY,idx1索引合并
33.8排序[PRIMARY,idx1,idx2], idx2的cost太大放弃1.580271.71097PRIMARY,idx1索引合并
43.8排序[PRIMARY,idx1,idx2], idx2的cost太大放弃1.580271.71097PRIMARY,idx1索引合并
null3.8排序[idx1,idx2],cost太大, 不用合并idx1的cost太大,不用合并1.71097idx2 1.21183索引idx2
二、相关代码解释

DYNAMIC_RANGE 的判断在对表join排序以后执行make_join_query_block的时候,这时候要对非 join 第一张表做 recheck,recheck 以后有可能让表变为 DYNAMIC_RANGE 扫描方式。

static bool make_join_query_block(JOIN *join, Item *cond) {
        // 满足以下条件的需要进行RECHECK,要么是非第一张表要么是有limit语句
        if ((tab->type() == JT_ALL || tab->type() == JT_RANGE ||
             tab->type() == JT_INDEX_MERGE || tab->type() == JT_INDEX_SCAN) &&
            tab->use_quick != QS_RANGE) {
          if (cond &&                              // 1a
              (tab->keys() != tab->const_keys) &&  // 1b
              (i > 0 ||                            // 1c
               (join->query_block->master_query_expression()->item &&
                cond->is_outer_reference())))
            recheck_reason = NOT_FIRST_TABLE;
          else if (!tab->const_keys.is_clear_all() &&  // 2a
                   i == join->const_tables &&          // 2b
                   (join->query_expression()->select_limit_cnt <
                    (tab->position()->rows_fetched *
                     tab->position()->filter_effect)) &&  // 2c
                   !join->calc_found_rows)                // 2d
            recheck_reason = LOW_LIMIT;

        // 满足这个if条件的执行QS_DYNAMIC_RANGE,详情见下面几张表
          if (!tab->table()->quick_keys.is_subset(tab->checked_keys) ||
              !tab->needed_reg.is_subset(tab->checked_keys)) {
            tab->keys().merge(tab->table()->quick_keys);
            tab->keys().merge(tab->needed_reg);
            if (!tab->needed_reg.is_clear_all() &&
                (tab->table()->quick_keys.is_clear_all() ||
                 (tab->range_scan() &&
                  (tab->range_scan()->num_output_rows() >= 100.0)))) {
              tab->use_quick = QS_DYNAMIC_RANGE;
              tab->set_type(JT_ALL);
            } else
              tab->use_quick = QS_RANGE;
          }
        }
}
// 实际使用代码
bool DynamicRangeIterator::Init() {
  // 每次迭代器开始的时候先获取最佳索引组合和AccessPath
  AccessPath *range_scan;
  int rc = test_quick_select(&range_scan);
}

表一:需要进行 recheck 的原因

场景条件
非join表连接的第一张表存在针对这张表的条件
连接的第一张表没有第一张表的列与常量值的比较,limit值小于预估的满足条件的行数

表二:quick_type 类型

类型说明
QS_NONE不使用快速扫描
QS_RANGE使用范围扫描
QS_DYNAMIC_RANGE使用动态范围

表三:表用 QS_DYNAMIC_RANGE 的场合

条件(以下必须全部满足)说明
条件列存在索引有机会生成mm tree
keyuse_array数组没有值有值的话执行REF扫描,一般有OR条件时候导致该数组没有值
表没有对应的mm tree无法生成mm tree的条件
这张表不是join连接的第一张表
对表执行recheckrecheck的原因见表一
recheck以后生成AccessPath但是找到的范围内行数大于等于100行
三、实际例子说明

接下来看几个例子来说明上面的代码:

greatsql> EXPLAIN SELECT * FROM t1 join t3 ON t1.c1=t3.ccc1 or t1.c2<5;
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys     | key  | key_len | ref  | rows | filtered | Extra                                          |
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
|  1 | SIMPLE      | t3    | NULL       | ALL  | idx3_1            | NULL | NULL    | NULL |    5 |   100.00 | NULL                                           |
|  1 | SIMPLE      | t1    | NULL       | ALL  | PRIMARY,idx1,idx2 | NULL | NULL    | NULL |    7 |    43.67 | Range checked for each record (index map: 0x7) |
+----+-------------+-------+------------+------+-------------------+------+---------+------+------+----------+------------------------------------------------+
-- 第一次对单表进行估计的时候t1.c1=t3.ccc1条件没有加入到mm tree,只对t1.c1打了一个标记MAYBE_KEY表示后面可能可以用到这个索引,因此最后没有生成mm tree,在make_join_query_block因为已经确定表连接顺序可以使用t1.c1=t3.ccc1条件,这时候可以把两个条件结合起来对t1执行mm tree,因此这个时候才生成mm tree,而这个时候才能考虑range scan和索引合并等操作。

image-20250303143457768

t1 的 JOIN_TAB 的两个相关 key 变量,因此 keys() != const_keys

keyidx2(c2,date1)idx1(c2)primary(c1)说明
keys()111用来存放所有条件列涉及的key,这里指t1所有索引
const_keys110用来存放所有列与常量对比的key,这里指t1.c2<5

下面删除t1的一些数据,让join方式变为t1在前t3在后,这样的话对t1就不需要执行recheck,并且最后t1也通过索引进行扫描。

greatsql> DELETE FROM t1 WHERE c1 IN (7,8,11);
greatsql> EXPLAIN SELECT * FROM t1 JOIN t3 ON t1.c1=t3.ccc1 OR t1.c2<5;
+----+-------------+-------+------------+-------+-------------------+------+---------+------+------+----------+--------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys     | key  | key_len | ref  | rows | filtered | Extra                                      |
+----+-------------+-------+------------+-------+-------------------+------+---------+------+------+----------+--------------------------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | PRIMARY,idx1,idx2 | idx2 | 11      | NULL |    3 |   100.00 | Using index                                |
|  1 | SIMPLE      | t3    | NULL       | ALL   | idx3_1            | NULL | NULL    | NULL |   10 |   100.00 | Using where; Using join buffer (hash join) |
+----+-------------+-------+------------+-------+-------------------+------+---------+------+------+----------+--------------------------------------------+

下面执行一下三张表的连接,看到因为t1不是第一张表,最后用到了DYNAMIC RANGE

greatsql> INSERT INTO t1 VALUES (7,null,'2020-03-25 16:44:00.123456'),(8,10,'2020-10-25 16:44:00.123456'),(11,16,'2023-03-25 16:44:00.123456');
greatsql> EXPLAIN SELECT * FROM t1 join t3 join t2 ON t1.c1=t3.ccc1 and t1.c1=t2.cc1 or t1.c2<5 ;
+----+-------------+-------+------------+-------+-------------------+--------+---------+------+------+----------+------------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys     | key    | key_len | ref  | rows | filtered | Extra                                          |
+----+-------------+-------+------------+-------+-------------------+--------+---------+------+------+----------+------------------------------------------------+
|  1 | SIMPLE      | t2    | NULL       | index | PRIMARY           | idx2_1 | 5       | NULL |    5 |   100.00 | Using index                                    |
|  1 | SIMPLE      | t1    | NULL       | ALL   | PRIMARY,idx1,idx2 | NULL   | NULL    | NULL |    7 |    42.85 | Range checked for each record (index map: 0x7) |
|  1 | SIMPLE      | t3    | NULL       | ALL   | idx3_1            | NULL   | NULL    | NULL |    5 |   100.00 | Using where; Using join buffer (hash join)     |
+----+-------------+-------+------------+-------+-------------------+--------+---------+------+------+----------+------------------------------------------------+

如果遇到 DYNAMIC RANGE 的情况,每行进行索引判断肯定比一开始就决定单纯走索引浪费时间,为了避免这种情况,可以采取以下的方法来避免。

1、强制让 DYNAMIC RANGE 的表作为驱动表

greatsql> EXPLAIN SELECT /*+ qb_name(qb1) JOIN_ORDER(@qb1 t1,t2,t3) */ * FROM t1 join t3 join t2 ON t1.c1=t3.ccc1 and t1.c1=t2.cc1 or t1.c2<5 ;
+----+-------------+-------+------------+-------+-------------------+--------+---------+------+------+----------+---------------------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys     | key    | key_len | ref  | rows | filtered | Extra                                                   |
+----+-------------+-------+------------+-------+-------------------+--------+---------+------+------+----------+---------------------------------------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | PRIMARY,idx1,idx2 | idx2   | 11      | NULL |    7 |   100.00 | Using index                                             |
|  1 | SIMPLE      | t2    | NULL       | index | PRIMARY           | idx2_1 | 5       | NULL |    5 |   100.00 | Using where; Using index; Using join buffer (hash join) |
|  1 | SIMPLE      | t3    | NULL       | ALL   | idx3_1            | NULL   | NULL    | NULL |    5 |   100.00 | Using where; Using join buffer (hash join)              |
+----+-------------+-------+------------+-------+-------------------+--------+---------+------+------+----------+---------------------------------------------------------+

2、给 DYNAMIC RANGE 的表强制指定索引

greatsql> EXPLAIN SELECT * FROM t1 FORCE INDEX(idx1,idx2) join t3 join t2 ON t1.c1=t3.ccc1 and t1.c1=t2.cc1 or t1.c2<5 ;
+----+-------------+-------+------------+-------+---------------+--------+---------+------+------+----------+---------------------------------------------------------+
| id | select_type | table | partitions | type  | possible_keys | key    | key_len | ref  | rows | filtered | Extra                                                   |
+----+-------------+-------+------------+-------+---------------+--------+---------+------+------+----------+---------------------------------------------------------+
|  1 | SIMPLE      | t2    | NULL       | index | PRIMARY       | idx2_1 | 5       | NULL |    5 |   100.00 | Using index                                             |
|  1 | SIMPLE      | t1    | NULL       | index | idx1,idx2     | idx2   | 11      | NULL |    7 |    42.85 | Using where; Using index; Using join buffer (hash join) |
|  1 | SIMPLE      | t3    | NULL       | ALL   | idx3_1        | NULL   | NULL    | NULL |    5 |   100.00 | Using where; Using join buffer (hash join)              |
+----+-------------+-------+------------+-------+---------------+--------+---------+------+------+----------+---------------------------------------------------------+

3、改变条件,删除or条件,使用 keyuse_array 数组来选择路径。

greatsql> EXPLAIN SELECT * FROM t1 join t3 join t2 ON t1.c1=t3.ccc1 and t1.c1=t2.cc1;
+----+-------------+-------+------------+--------+---------------+---------+---------+------------+------+----------+-------------+
| id | select_type | table | partitions | type   | possible_keys | key     | key_len | ref        | rows | filtered | Extra       |
+----+-------------+-------+------------+--------+---------------+---------+---------+------------+------+----------+-------------+
|  1 | SIMPLE      | t2    | NULL       | index  | PRIMARY       | idx2_1  | 5       | NULL       |    5 |   100.00 | Using index |
|  1 | SIMPLE      | t3    | NULL       | ref    | idx3_1        | idx3_1  | 5       | db1.t2.cc1 |    1 |   100.00 | NULL        |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | PRIMARY       | PRIMARY | 4       | db1.t2.cc1 |    1 |   100.00 | NULL        |
+----+-------------+-------+------------+--------+---------------+---------+---------+------------+------+----------+-------------+
四、总结

从上面关于 DYNAMIC RANGE 的解释我们知道这个状态需要经过一系列判断,并且只在特定条件才有可能出现,但是每行进行一次索引判断还是很消耗资源的,最好还是直接走索引,所以要尽量避免这种情况,适当的时候可以进行 SQL 命令干预。


Enjoy GreatSQL :)

## 关于 GreatSQL

GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html

image-20230105161905827

技术交流群:

微信:扫码添加GreatSQL社区助手微信好友,发送验证信息加群

image-20221030163217640


GreatSQL社区
8 声望6 粉丝

GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。