【GreatSQL优化器-18】GROUP_INDEX_SKIP_SCAN

一、GROUP_INDEX_SKIP_SCAN介绍

GreatSQL 优化器的分组索引跳跃扫描(GROUP Index Skip Scan) 是一种优化查询的技术,尤其在联合索引中用于减少扫描的无效行数。group by操作在没有合适的索引可用的时候,通常先扫描整个表提取数据并创建一个临时表,然后按照 group by 指定的列进行排序。在这个临时表里面,对于每一个group的数据行来说是连续在一起的。完成排序之后,就可以发现所有的groups,并可以执行聚集函数(aggregate function)。可以看到,在没有使用索引的时候,需要创建临时表和排序。在执行计划中通常可以看到“Using temporary; Using filesort”

GROUP索引跳跃扫描利用的是联合索引中非首列(非最左前缀)的索引列,来提高查询效率。例如,假如有个查询需求,需要查某个列的 distinct 值,或者 group by 之后的值 MIN()/MAX() 值,最简单的方式是扫描整个数据页,然后分组排序后,取 DISTINCT/MIN/MAX 值,但由于索引本身就有序并且完成了 group by 工作,如果可以直接借助于这个索引的有序性,那么扫描整个索引就可以避免二次排序的开销。这个功能支持带有聚合函数+GROUP BY或者聚合函数+DISTINCT或者DISTINCT的SQL使用。

这个功能类似于 INDEX_SKIP_SCAN,做一次对相同的 key 值进行 skip 动作,即可以跳过了索引上相同的段, 这样相比较与索引扫描而言,减少了很多的索引扫描,索引稀疏性越好,性能就会相对更好。

下面用一个简单的例子来说明GROUP_INDEX_SKIP_SCAN怎么应用在优化器。

CREATE TABLE t1(c1 INT, c2 INT, c3 INT, c4 INT);
CREATE UNIQUE INDEX i1_t1 ON t1(c1,c2,c3);
INSERT INTO t1 VALUES (1,1,1,1), (1,1,2,2), (1,3,3,3), (1,4,4,4), (1,5,5,5),
                      (2,1,1,1), (2,2,2,2), (2,3,3,3), (2,4,4,4), (2,5,5,5);
INSERT INTO t1 SELECT c1, c2, c3+5, c4+10  FROM t1;
INSERT INTO t1 SELECT c1, c2, c3+10, c4+20 FROM t1;
INSERT INTO t1 SELECT c1, c2, c3+20, c4+40 FROM t1;
INSERT INTO t1 SELECT c1, c2, c3+40, c4+80 FROM t1;
ANALYZE TABLE t1;

-- 下面的结果用到了group index skip scan,扫描方式是RANGE SCAN。
greatsql> explain SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | range | i1_t1         | i1_t1 | 10      | NULL |    3 |   100.00 | Using index for group-by |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+

/* 运行过程:
1、先找到第一列的唯一值,得到结果为1和2
SELECT distinct c1 FROM t1; 
2、根据第一列的分组结果在分组内对c2执行范围扫描
SELECT c1, MIN(c2) FROM t1 WHERE c1 = 1;
SELECT c1, MIN(c2) FROM t1 WHERE c1 = 2;*/

-- 如果没有联合索引,那么这条sql内部要创建临时表用于数据的临时处理,扫描方式是全表扫描。可见用GROUP_INDEX_SKIP_SCAN方式执行groupby可以节省空间和开销,提升执行效率。

greatsql> DROP INDEX i1_t1 ON t1;
greatsql> explain SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra           |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
|  1 | SIMPLE      | t1    | NULL       | ALL  | NULL          | NULL | NULL    | NULL |  160 |   100.00 | Using temporary |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-----------------+
二、get_best_group_min_max代码解释

group index skip scan是根据条件和聚合函数列以及distinct列,以及查找对应的联合索引进行判定能不能用group index skip scan,其中联合索引中聚合函数列或者distinct列之前的列为prefix列,即用来作为分组的依据的列,如果有多个除了第一列之外的范围列,那么选取遇到的第一个聚合函数列之前的列为前缀进行分组。

group index skip scan功能没有相关可以开启关闭的关键词,默认满足条件就可以使用,因此如果不想使用就要改变条件或者group by分组,只要不满足条件就不会使用联合索引。

int test_quick_select() {
  // 先判断GROUP_INDEX_SKIP_SCAN是否满足条件,不满足的话执行索引合并。
  AccessPath *group_path = get_best_group_min_max();
  // 不满足GROUP_INDEX_SKIP_SCAN执行索引合并,相关知识看之前知识介绍
}

AccessPath *get_best_group_min_max() {
  // 遍历表所有索引,找到联合索引
  for (uint cur_param_idx = 0; cur_param_idx < param->keys; ++cur_param_idx) {
    // 处理group by语句
    if (!join->group_list.empty()) {
      // 找到联合索引内的列字段相关mm tree
      if (tree) cur_tree = get_index_range_tree(cur_index, tree, param);
      // 该条件是否是等号条件或者IS NULL条件
          is_eq_range_pred = !(range->min_flag & is_open_range) &&
                             !(range->max_flag & is_open_range) &&
                             ((range->maybe_null() && range->min_value[0] &&
                               range->max_value[0]) ||
                              memcmp(range->min_value, range->max_value,
                                     cur_part->store_length) == 0);
    }
    // 处理distinct语句
    if ((join->group_list.empty() && join->select_distinct) ||
        is_agg_distinct) {
      检查distinct后面的列字段,必须包含联合索引前缀列或者所有列
    }
    // 获取第一个不在GROUP BY的索引字段
    first_non_group_part =
        (cur_group_key_parts < actual_key_parts(cur_index_info))
            ? cur_index_info->key_part + cur_group_key_parts
            : nullptr;
    // 获取聚合函数的索引字段
    first_non_infix_part = cur_min_max_arg_part
                               ? (cur_min_max_arg_part < last_part)
                                     ? cur_min_max_arg_part
                                     : nullptr
                               : nullptr;
    // 接下来是对sql语句的各种检查,确认能否用group index skip scan,代码略,具体见表一

    // 获取聚合函数列与第一个非GROUP BY列之间的差值
    key_infix_parts = cur_key_infix_len
                          ? (uint)(first_non_infix_part - first_non_group_part)
                          : 0;
    // 获取GROUP BY列与聚合函数列之间的列个数
    cur_used_key_parts = cur_group_key_parts + key_infix_parts;
    // 计算range范围内行数
    if (tree) {
      cur_quick_prefix_records = check_quick_select();
    }
    // 计算rows和cost
    cost_group_min_max();
  }
  // 最后生成AccessPath
  AccessPath *path = new (param->return_mem_root) AccessPath;
  path->type = AccessPath::GROUP_INDEX_SKIP_SCAN;
}

// 计算rows和cost,这里主要展示的是rows的计算公式
static void cost_group_min_max() {
  table_records = table->file->stats.records;
  keys_per_block = (table->file->stats.block_size / 2 /
                        (index_info->key_length + table->file->ref_length) +
                    1);
  num_blocks = (uint)(table_records / keys_per_block) + 1;
  if (index_info->has_records_per_key(group_key_parts - 1))
    // Use index statistics
    keys_per_group = index_info->records_per_key(group_key_parts - 1);
  else
    /* If there is no statistics try to guess */
    keys_per_group = guess_rec_per_key(table, index_info, group_key_parts);

  if (single_group)
    num_groups = 1;
  else {
    num_groups = (uint)(table_records / keys_per_group) + 1;
    if (range_tree && (quick_prefix_records != HA_POS_ERROR)) {
      quick_prefix_selectivity =
          (double)quick_prefix_records / (double)table_records;
      num_groups = (uint)rint(num_groups * quick_prefix_selectivity);
      num_groups = std::max(num_groups, 1U);
    }
  }
}

最后具体实现过程见代码GroupIndexSkipScanIterator::Read(),这里不再展开赘述。

表一:不能使用GROUP_INDEX_SKIP_SCAN的场合

场合cause说明
sql语句涉及多张表not_single_table只能支持单张表
sql语句带有rolluprollup
表没有可用联合索引not_covering
sql语句带有ORDER BY DESCcannot_do_reverse_ordering
sql语句不包含group_by或者DISTINCTnot_group_by_or_distinct
sql语句不包含COUNT,SUM,AVG,MIN,MAX聚合函数not_applicable_aggregate_function
查询条件生成了tree->mergesdisjuntive_predicate_present比如where c1=1 or c2>1,c1和c2属于不同索引
查询条件既包含MIN/MAX列又包含非MIN/MAX列minmax_keypart_in_disjunctive_query见下面例子
sql语句既带有distinct又带有min或者maxhave_both_agg_distinct_and_min_max
sql语句既带有distinct且distinct后面参数包含列和非列
group_by后面跟的不是列而是表达式group_field_is_expression比如GROUP BY c1+1
group by字段是联合索引的第一列group_attribute_not_prefix_in_index见下面例子
distinct后面字段是派生表的列derived_table
distinct后面字段是联合索引非前缀列或者非所有列select_attribute_not_prefix_in_indexdistinct后面字段必须是联合索引前缀列或者所有列
group by前面的聚合函数的列不是连续的联合索引列no_nongroup_keypart_predicate见下面例子
聚合函数(distinct column)字段是主键索引primary_key_is_clustered
聚合函数列小于等于group by字段aggregate_column_not_suffix_in_idx见下面例子
带有聚合函数的group by语句的条件不是聚合函数列之前一个列的等号条件non_equality_gap_attribute比如where c1>2 and c2>1 或者 where c1=2 and c2>1 见下面例子。而where c1>2 and c2=1是允许的
带有聚合函数的group by语句且没有条件,聚合函数列大于group by的列no_nongroup_keypart_predicate见下面例子
没有聚合函数但是有group by语句的条件带有非select和group by的条件列keypart_reference_from_where_clause比如where c1=1 or c3=1,见下面例子
带有聚合函数的group by语句的sql涉及聚合函数之后的列keypart_after_infix_in_query见下面例子
三、实际例子说明

接下来看几个例子来说明上面的代码。

greatsql> explain SELECT c1,c2,MIN(c3) FROM t1 where c1>1 and c2=1  GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+---------------------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                                 |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+---------------------------------------+
|  1 | SIMPLE      | t1    | NULL       | range | i1_t1         | i1_t1 | 15      | NULL |    2 |   100.00 | Using where; Using index for group-by |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+---------------------------------------+
                 "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "index_dives_for_eq_ranges": true,
                        "ranges": [
                          "1 < c1"
                        ],
                        "rows": 2, 用group index skip scan扫描满足条件c1>1 and c2=1的一共2条数据,计算见下面
                        "cost": 0.55
                      }
                    ]
                  },
                  "best_group_range_summary": {
                    "type": "index_group",
                    "index": "i1_t1",
                    "group_attribute": "c3",
                    "min_aggregate": true,
                    "max_aggregate": false,
                    "distinct_aggregate": false,
                    "rows": 2,
                    "cost": 0.55,
                    "key_parts_used_for_access": [
                      "c1",
                      "c2",
                      "c3"
                    ],
                    "ranges": [
                      "1 < c1"
                    ],
                    "chosen": true
                  },
                  "skip_scan_range": {
                    "chosen": false,
                    "cause": "has_group_by"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "i1_t1",
                        "ranges": [
                          "1 < c1"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": true,
                        "in_memory": 1,
                        "rows": 80, 单独用索引i1_t1满足1 < c1条件的有80条
                        "cost": 8.31051,
                        "chosen": false,
                        "cause": "cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  },
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "index_group",
                      "index": "i1_t1",
                      "group_attribute": "c3",
                      "min_aggregate": true,
                      "max_aggregate": false,
                      "distinct_aggregate": false,
                      "rows": 2,
                      "cost": 0.55,
                      "key_parts_used_for_access": [
                        "c1",
                        "c2",
                        "c3"
                      ],
                      "ranges": [
                        "1 < c1"
                      ]
                    },
                    "rows_for_plan": 2,
                    "cost_for_plan": 0.55,
                    "chosen": true
                  }
                }

/* 计算方式:
table_records = 160
keys_per_block = 391
num_blocks = (table_records / keys_per_block) + 1 = 160 / 391 + 1 = 1
keys_per_group = 80 -- group by字段分组后每组的行数
num_groups = (table_records / keys_per_group) + 1 = 160 / 80 + 1 = 3
quick_prefix_selectivity = quick_prefix_records / table_records = 80 / 160 = 0.5 -- 计算前缀选择系数
num_groups = num_groups * quick_prefix_selectivity = 3 * 0.5 = 2 */

下面看一下 distinct 的例子:

greatsql> explain SELECT distinct c1,c2 from t1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | range | i1_t1         | i1_t1 | 10      | NULL |   10 |   100.00 | Using index for group-by |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
                 "group_index_range": {
                    "distinct_query": true, -- 这里说明用到了distinct关键字
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "rows": 10,
                        "cost": 1.75
                      }
                    ]
                  },
                  "best_group_range_summary": {
                    "type": "index_group",
                    "index": "i1_t1",
                    "group_attribute": null,
                    "min_aggregate": false,
                    "max_aggregate": false,
                    "distinct_aggregate": false,
                    "rows": 10,
                    "cost": 1.75,
                    "key_parts_used_for_access": [
                      "c1",
                      "c2"
                    ],
                    "ranges": [
                    ],
                    "chosen": true
                  },

-- 当然也支持聚合函数+distinct+group by的组合。
greatsql> explain SELECT c1,sum(distinct c2) from t1 group by c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | range | i1_t1         | i1_t1 | 10      | NULL |   10 |   100.00 | Using index for group-by |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+

下面例子都是对上面表格的例子:

-- 查询条件既包含MIN/MAX列又包含非MIN/MAX列
greatsql> explain SELECT c1, MIN(c2) FROM t1 where c3>1 or c2<6 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |    55.55 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
                  "best_covering_index_scan": {
                    "index": "i1_t1",
                    "cost": 17.4066,
                    "chosen": true
                  },
                  "setup_range_conditions": [
                  ],
                  "range_scan_possible": false,
                  "cause": "condition_always_true",
                  "group_index_range": {
                    "chosen": false,
                    "cause": "minmax_keypart_in_disjunctive_query"
                  },
                  "skip_scan_range": {
                    "chosen": false,
                    "cause": "has_group_by"
                  }

-- group by字段是联合索引的第一列
greatsql> explain SELECT c2, MIN(c1) FROM t1 GROUP BY c2 ;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+------------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                        |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+------------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |   100.00 | Using index; Using temporary |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+------------------------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "group_attribute_not_prefix_in_index"
                      }
                    ]
                  }

-- 带有聚合函数的group by语句且没有条件,聚合函数列大于group by的列
greatsql> explain SELECT c1, MIN(c3) FROM t1 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+-------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "no_nongroup_keypart_predicate"
                      }
                    ]
                  },

-- 带有聚合函数的group by语句的sql涉及聚合函数之后的列
greatsql> explain SELECT c1,MIN(c2) FROM t1 where c3=2 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |    10.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "keypart_after_infix_in_query"
                      }
                    ]
                  },

-- 带有聚合函数的group by语句的条件不是聚合函数列之前一个列的等号条件
greatsql> explain SELECT c1,c2,MIN(c3) FROM t1 where c3=2 GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |    10.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "non_equality_gap_attribute"
                      }
                    ]
                  },
                  
-- 聚合函数列小于等于group by字段
greatsql> explain SELECT c1,c2,MIN(c2) FROM t1 where c1=2 and c2=2  GROUP BY c1,c2;
+----+-------------+-------+------------+------+---------------+-------+---------+-------------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key   | key_len | ref         | rows | filtered | Extra       |
+----+-------------+-------+------------+------+---------------+-------+---------+-------------+------+----------+-------------+
|  1 | SIMPLE      | t1    | NULL       | ref  | i1_t1         | i1_t1 | 10      | const,const |   16 |   100.00 | Using index |
+----+-------------+-------+------------+------+---------------+-------+---------+-------------+------+----------+-------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "aggregate_column_not_suffix_in_idx"
                      }
                    ]
                  },

-- 带有聚合函数的group by语句且没有条件,聚合函数列大于group by的列
greatsql> explain SELECT c1,c2,MIN(c3) FROM t1  GROUP BY c1;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+-------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "no_nongroup_keypart_predicate"
                      }
                    ]
                  },

-- 没有聚合函数但是有group by语句的条件带有非select和group by的条件列
greatsql> explain SELECT c1,c2 FROM t1 where c1=1 or c3=1 GROUP BY c1,c2;
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type  | possible_keys | key   | key_len | ref  | rows | filtered | Extra                    |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
|  1 | SIMPLE      | t1    | NULL       | index | i1_t1         | i1_t1 | 15      | NULL |  160 |    55.00 | Using where; Using index |
+----+-------------+-------+------------+-------+---------------+-------+---------+------+------+----------+--------------------------+
                  "group_index_range": {
                    "potential_group_range_indexes": [
                      {
                        "index": "i1_t1",
                        "covering": true,
                        "usable": false,
                        "cause": "keypart_reference_from_where_clause"
                      }
                    ]
                  },
四、总结

从上面group index skip iscan的代码我们了解了组别跳跃扫描的使用条件和使用场景,以及使用规则,这个功能让一些涉及分组和聚合函数执行的时候直接读联合索引就可以很快得到分组数据,避免了无效列的读取,提高了效率,但sql使用限制比较多,因此创建联合索引和使用的时候要注意sql语句与联合索引的匹配才能用到这个功能。


Enjoy GreatSQL :)

## 关于 GreatSQL

GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html

image-20230105161905827

技术交流群:

微信:扫码添加GreatSQL社区助手微信好友,发送验证信息加群

image-20221030163217640


GreatSQL社区
8 声望6 粉丝

GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。