头图

背景与目标

我们之前曾评估使用过SeaTunnel做CDC入湖验证:SeaTunnel-CDC入湖实践,这些场景都是能直连数据库的场景,业务需求中经常会出现无法直连数据库做CDC进行数据同步的场景,而这些场景就需要使用API进行数据对接,用Apache DolphinScheduler定时同步数据。

举个实际中的例子:

  • ERP(SAP)的库存数据进行同步入湖仓做库存分析

同时,本次目标希望其他同事能依样画葫芦,在以后的对接http接口到湖仓的时候能够自行完成,而非每遇到一个对接需求,就需要通过代码方式进行对接。

准备工作

  • seatunnel 2.3.10

首先,您需要在${SEATUNNEL_HOME}/config/plugin_config文件中加入连接器名称,然后,执行命令来安装连接器,确认连接器在${SEATUNNEL_HOME}/connectors/目录下即可。

本例中我们会用到:connector-jdbcconnector-paimon

写入StarRocks也可以使用connector-starrocks,本例中的场景比较适合用connector-jdbc,所以使用connector-jdbc

# 配置连接器名称
--connectors-v2--
connector-jdbc
connector-starrocks
connector-paimon
--end--
# 安装连接器
sh bin/install-plugin.sh 2.3.10

SeaTunnel任务

我们先至少保证能在本地完成SeaTunnel任务,再完成对Apache DolphinScheduler的对接。

  • http to starRocks
    example/http2starrocks

    env {
    parallelism = 1
    job.mode = "BATCH"
    }
    
    source {
    Http {
      plugin_output = "stock"
      url = "https://ip/http/prd/query_sap_stock"
      method = "POST"
      headers {
        Authorization = "Basic XXX"
        Content-Type = "application/json"
      }
      body = """{"IT_WERKS": [{"VALUE": "1080"}]}"""
      format = "json"
      content_field = "$.ET_RETURN.*"
      schema {
        fields {
          MATNR = "string"
          MAKTX = "string"
          WERKS = "string"
          NAME1 = "string"
          LGORT = "string"
          LGOBE = "string"
          CHARG = "string"
          MEINS = "string"
          LABST = "double"
          UMLME = "double"
          INSME = "double"
          EINME = "double"
          SPEME = "double"
          RETME = "double"
        }
      }
    }
    }
    
    # 此转换操作主要用于字段从命名等方便用途
    transform {
    Sql {
      plugin_input = "stock"
      plugin_output = "stock-tf-out"
      query = "select MATNR, MAKTX, WERKS,NAME1,LGORT,LGOBE,CHARG,MEINS,LABST,UMLME,INSME,EINME,SPEME,RETME from stock"
    }
    }
    
    # 连接starRocks 进行数据分区覆写,本例适用starRocks建表,按照分区insert overwrite 覆写
    sink {
      jdbc {
          plugin_input = "stock-tf-out"
          url = "jdbc:mysql://XXX:9030/scm?useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true"
          driver = "com.mysql.cj.jdbc.Driver"
          user = "lab"
          password = "XXX"
          compatible_mode="starrocks"
          query = """insert overwrite ods_sap_stock PARTITION (WERKS='1080') (MATNR, MAKTX, WERKS,NAME1,LGORT,LGOBE,CHARG,MEINS,LABST,UMLME,INSME,EINME,SPEME,RETME) values(?,?,?,?,?,?,?,?,?,?,?,?,?,?)"""
          }
    }
    
    # connector-starrocks进行对接 (未看到支持sql语句进行数据insert overwrite,本例子场景不适合),比较适合表数据全部删除重建场景
    // sink {
    //   StarRocks {
    //     plugin_input = "stock-tf-out"
    //     nodeUrls = ["ip:8030"]
    //     base-url = "jdbc:mysql://ip:9030/"
    //     username = "lab"
    //     password = "XXX"
    //     database = "scm"
    //     table = "ods_sap_stock"
    //     batch_max_rows = 1000
    //     data_save_mode="DROP_DATA"
    //     starrocks.config = {
    //       format = "JSON"
    //       strip_outer_array = true
    //     }
    //     schema_save_mode = "RECREATE_SCHEMA"
    //     save_mode_create_template="""
    //       CREATE TABLE IF NOT EXISTS `scm`.`ods_sap_stock` (
    //         MATNR STRING COMMENT '物料',
    //         WERKS STRING COMMENT '工厂',
    //         LGORT STRING COMMENT '库存地点',
    //         MAKTX STRING COMMENT '物料描述',
    //         NAME1 STRING COMMENT '工厂名称',
    //         LGOBE STRING COMMENT '地点描述',
    //         CHARG STRING COMMENT '批次编号',
    //         MEINS STRING COMMENT '单位',
    //         LABST DOUBLE COMMENT '非限制使用库存',
    //         UMLME DOUBLE COMMENT '在途库存',
    //         INSME DOUBLE COMMENT '质检库存',
    //         EINME DOUBLE COMMENT '受限制使用的库存',
    //         SPEME DOUBLE COMMENT '已冻结的库存',
    //         RETME DOUBLE COMMENT '退货'
    //       ) ENGINE=OLAP
    //       PRIMARY KEY ( MATNR,WERKS,LGORT)
    //       COMMENT 'sap库存'
    //       DISTRIBUTED BY HASH (WERKS) PROPERTIES (
    //       "replication_num" = "1"
    //       )
    //     """
    //   }
    // }
  • http to paimon
    example/http2paimon

    env {
    parallelism = 1
    job.mode = "BATCH"
    }
    
    source {
    Http {
      plugin_output = "stock"
      url = "https://ip/http/prd/query_sap_stock"
      method = "POST"
      headers {
        Authorization = "Basic XXX"
        Content-Type = "application/json"
      }
      body = """{"IT_WERKS": [{"VALUE": "1080"}]}"""
      format = "json"
      content_field = "$.ET_RETURN.*"
      schema {
        fields {
          MATNR = "string"
          MAKTX = "string"
          WERKS = "string"
          NAME1 = "string"
          LGORT = "string"
          LGOBE = "string"
          CHARG = "string"
          MEINS = "string"
          LABST = "double"
          UMLME = "double"
          INSME = "double"
          EINME = "double"
          SPEME = "double"
          RETME = "double"
        }
      }
    }
    }
    # 此转换操作主要用于字段从命名等方便用途
    transform {
    Sql {
      plugin_input = "stock"
      plugin_output = "stock-tf-out"
      query = "select MATNR, MAKTX, WERKS,NAME1,LGORT,LGOBE,CHARG,MEINS,LABST,UMLME,INSME,EINME,SPEME,RETME from stock"
    }
    }
    
    # 连接paimon进行数据同步,paimon 暂时 未看到有支持 insert overwrite 分区覆写,此例仅作为参考,不适用本此例子需求
    sink {
    Paimon {
      warehouse = "s3a://test/"
      database = "sap"
      table = "ods_sap_stock"
      paimon.hadoop.conf = {
          fs.s3a.access-key=XXX
          fs.s3a.secret-key=XXX
          fs.s3a.endpoint="http://minio:9000"
          fs.s3a.path.style.access=true
          fs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider
      }
    }
    }
    

    DolphinScheduler集成SeaTunnel

  • 制作worker镜像

    FROM dolphinscheduler.docker.scarf.sh/apache/dolphinscheduler-worker:3.2.2
    RUN mkdir /opt/seatunnel
    RUN mkdir /opt/seatunnel/apache-seatunnel-2.3.10
    # 容器集成seatunnel
    COPY apache-seatunnel-2.3.10/ /opt/seatunnel/apache-seatunnel-2.3.10/

    打包镜像,推送到镜像仓库

    docker build --platform=linux/amd64 -t apache/dolphinscheduler-worker:3.2.2-seatunnel .
  • 使用新镜像部署一个worker,此处修改docker-compose.yaml,增加一个dolphinscheduler-worker-seatunnel节点。

    ...
    dolphinscheduler-worker-seatunnel:
      image: xxx/dolphinscheduler-worker:3.2.2-seatunnel
      profiles: ["all"]
      env_file: .env
      healthcheck:
        test: [ "CMD", "curl", "http://localhost:1235/actuator/health" ]
        interval: 30s
        timeout: 5s
        retries: 3
      depends_on:
        dolphinscheduler-zookeeper:
          condition: service_healthy
      volumes:
        - ./dolphinscheduler-worker-seatunnel-data:/tmp/dolphinscheduler
        - ./dolphinscheduler-logs:/opt/dolphinscheduler/logs
        - ./dolphinscheduler-shared-local:/opt/soft
        - ./dolphinscheduler-resource-local:/dolphinscheduler
      networks:
        dolphinscheduler:
          ipv4_address: 172.15.0.18
    ...
  • DolphinScheduler配置SeaTunnel分组及环境配置

    • 安全中心-Worker分组管理,创建一个这个节点ip的分组,用于以后需要seatunnel的任务跑该分组

    1.png

    • 环境管理-创建环境,增加一个用于执行seatunnel的环境,同时需要绑定Worker分组为上一步创建的seatunnel分组

    2.png

    • 创建工作流定义,把上面的seatunnel任务配置填写上

    3.png

    • 运行时候,选择seatunnel的worker分组和环境即可跑在这个集成了seatunnel的环境上

    4.png


海豚调度
89 声望22 粉丝

Apache DolphinScheduler是一个分布式去中心化,易扩展的可视化DAG工作流任务调度平台。致力于解决数据处理流程中错综复杂的依赖关系,使调度系统在数据处理流程中开箱即用。