随着生成式人工智能(Generative AI)的崛起,从图像生成、自然语言处理到个性化推荐系统,生成式 AI 技术正迅速改变着各行各业的面貌。而在这场变革背后,数据的管理和治理显得尤为重要。对于企业来说,数据不仅是基础资源,更是构建 AI 应用和增强业务能力的关键。Apache Gravitino(incubating) 与 Databend 作为数...
随着云计算和大数据技术的发展,存储与计算分离(Separation of Storage and Compute,简称存算分离)逐渐成为数据库和大数据处理系统的主流架构。这一架构的核心思想是将数据存储与计算资源解耦,以便在需要时能够独立扩展。这种方式极大地提高了资源的利用率和系统的灵活性,成为云原生数据库设计中的重要趋势。
生成式人工智能(Generative AI)近年来快速崛起,从图像生成、自然语言处理到个性化推荐系统,生成式 AI 的应用范围越来越广泛。在这其中,数据可以说是企业在生成式 AI 时代取得成功的关键,每个公司都能访问相同的基础模型,但那些能够利用自己的数据构建具有真正商业价值的生成式人工智能应用的公司,将会是成功的公...
数据是洞察力的基石,越来越多的企业开始建设以数据资产为中心的存储和分析一体化方案,这要求 Data Infra 架构能够提供可扩展、灵活且统一的数据工作流。现代数据湖架构同时兼顾数据湖的可扩展性和数据仓库的性能,满足对大规模数据处理的需求,并应对数据的复杂性挑战。本文将介绍如何围绕 Databend 生态系统构建现代...