实验记录
资源: Berkeley PB library
- 介绍:
- 网址:http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
- 安装:
- 相关:matlab写的,可以用来学习PB Detector的原理以及使用,帮助理解!可以改进之前的论文!
资源:Graph cuts (MATLAB)
- 介绍:MATLAB wrapper for graph cuts multi-label energy minimization. This package provides source and precompiled Matlab mex files for the graph cuts based multi-label energy minimization techniques described in the thesis of Olga Veksler (GCoptimization Version 2.3). The wrapper can be used to solve energy minimizations in the form of: E(l) = sum_p D(p,l_p) + sum_{p,q} Vpq(l_p,l_q).
- 网址:http://vision.ucla.edu/~brian/gcmex.html
相关: 可以
-
Matlab Help:
[LABELS ENERGY ENERGYAFTER] = GCMEX(CLASS, UNARY, PAIRWISE, LABELCOST,EXPANSION)Parameters:
CLASS:: An 1xN vector which specifies the initial labels of each
of the N nodes in the graph
UNARY:: A CxN matrix specifying the potentials (data term) for
each of the C possible classes at each of the N nodes.
PAIRWISE:: An NxN sparse matrix specifying the graph structure and
cost for each link between nodes in the graph.
LABELCOST:: A CxC matrix specifying the fixed label cost for the
labels of each adjacent node in the graph.
EXPANSION:: A 0-1 flag which determines if the swap or expansion
method is used to solve the minimization. 0 == swap,
1 == expansion. If ommitted, defaults to swap.Outputs:
LABELS:: A 1xN vector of the final labels.
ENERGY:: The energy of the initial labeling contained in CLASS
ENERGYAFTER:: The energy of the final labels LABELSHow do I know if I should use swap or expansion? From GC_README.txt:
The expansion algorithm for energy minimization can be used
whenever for any 3 labels a,b,c V(a,a) + V(b,c) <= V(a,c)+V(b,a).
In other words, expansion algorithm can be used if the binary
energy for the expansion algorithm step is regular, using V.
Kolmogorov's terminology.The swap algorithm for energy minimization can be used whenever
for any 2 labels a,b V(a,a) + V(b,b) <= V(a,b)+V(b,a). In other
words, swap algorithm can be used if the binary energy for the
swap algorithm step is regular, using V. Kolmogorov's terminology.
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。