#include <iostream>
#include <vector>
#include <ctime>
#include <boost/thread/thread.hpp>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/console/parse.h>
#include <pcl/features/eigen.h>
#include <pcl/features/feature.h>
#include <pcl/features/normal_3d.h>
#include <pcl/impl/point_types.hpp>
#include <pcl/features/boundary.h>
#include <pcl/visualization/cloud_viewer.h>
using namespace std;
int main(int argc, char **argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
// if (pcl::io::loadPCDFile<pcl::PointXYZ>("/home/yxg/pcl/pcd/mid.pcd",*cloud) == -1)
if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1],*cloud) == -1)
{
PCL_ERROR("COULD NOT READ FILE mid.pcl \n");
return (-1);
}
std::cout << "points sieze is:"<< cloud->size()<<std::endl;
pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::Boundary> boundaries;
pcl::BoundaryEstimation<pcl::PointXYZ,pcl::Normal,pcl::Boundary> est;
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
/*
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身
kdtree.setInputCloud(cloud);
int k =2;
float everagedistance =0;
for (int i =0; i < cloud->size()/2;i++)
{
vector<int> nnh ;
vector<float> squaredistance;
// pcl::PointXYZ p;
// p = cloud->points[i];
kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance);
everagedistance += sqrt(squaredistance[1]);
// cout<<everagedistance<<endl;
}
everagedistance = everagedistance/(cloud->size()/2);
cout<<"everage distance is : "<<everagedistance<<endl;
*/
pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> normEst; //其中pcl::PointXYZ表示输入类型数据,pcl::Normal表示输出类型,且pcl::Normal前三项是法向,最后一项是曲率
normEst.setInputCloud(cloud);
normEst.setSearchMethod(tree);
// normEst.setRadiusSearch(2); //法向估计的半径
normEst.setKSearch(9); //法向估计的点数
normEst.compute(*normals);
cout<<"normal size is "<< normals->size()<<endl;
//normal_est.setViewPoint(0,0,0); //这个应该会使法向一致
est.setInputCloud(cloud);
est.setInputNormals(normals);
// est.setAngleThreshold(90);
// est.setSearchMethod (pcl::search::KdTree<pcl::PointXYZ>::Ptr (new pcl::search::KdTree<pcl::PointXYZ>));
est.setSearchMethod (tree);
est.setKSearch(20); //一般这里的数值越高,最终边界识别的精度越好
// est.setRadiusSearch(everagedistance); //搜索半径
est.compute (boundaries);
// pcl::PointCloud<pcl::PointXYZ> boundPoints;
pcl::PointCloud<pcl::PointXYZ>::Ptr boundPoints (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ> noBoundPoints;
int countBoundaries = 0;
for (int i=0; i<cloud->size(); i++){
uint8_t x = (boundaries.points[i].boundary_point);
int a = static_cast<int>(x); //该函数的功能是强制类型转换
if ( a == 1)
{
// boundPoints.push_back(cloud->points[i]);
( *boundPoints).push_back(cloud->points[i]);
countBoundaries++;
}
else
noBoundPoints.push_back(cloud->points[i]);
}
std::cout<<"boudary size is:" <<countBoundaries <<std::endl;
// pcl::io::savePCDFileASCII("boudary.pcd",boundPoints);
pcl::io::savePCDFileASCII("boudary.pcd", *boundPoints);
pcl::io::savePCDFileASCII("NoBoundpoints.pcd",noBoundPoints);
pcl::visualization::CloudViewer viewer ("test");
viewer.showCloud(boundPoints);
while (!viewer.wasStopped())
{
}
return 0;
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。