准备工作
抓取数据存到txt文档中,了解jieba
问题
- jieba分词分的不太准确,比如机器学习会被切成机器和学习两个词,使用自定义词典,原本的想法是只切出自定义词典里的词,但实际上不行,所以首先根据jieba分词结果提取出高频词并自行添加部分词作为词典,切词完毕只统计自定义词典里出现过的词
- wordcloud自身不支持中文词云,需要指定中文字体,并且现在大部分的博客提供的generate_from_frequencies方法的参数与现在的wordcloud的参数不同,现在这个方法接收的是dict类型
代码
# -*- coding: utf-8 -*-
import jieba
import os
import codecs
from scipy.misc import imread
import matplotlib as mpl
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
class GetWords(object):
def __init__(self, dict_name, file_list , dic_list):
self.dict_name = dict_name
self.file_list = file_list
self.dic_list = dic_list
#获取自定义词典
def get_dic(self):
dic = open(self.dict_name, 'r')
while 1:
line = dic.readline().decode('utf-8').strip()
self.dic_list.append(line)
if not line:
break
pass
def get_word_to_cloud(self):
for file in self.file_list:
with codecs.open('../spider/' + file, "r",encoding='utf-8', errors='ignore') as string:
string = string.read().upper()
res = jieba.cut(string, HMM=False)
reslist = list(res)
wordDict = {}
for i in reslist:
if i not in self.dic_list:
continue
if i in wordDict:
wordDict[i]=wordDict[i]+1
else:
wordDict[i] = 1
coloring = imread('test.jpeg')
wc = WordCloud(font_path='msyh.ttf',mask=coloring,
background_color="white", max_words=50,
max_font_size=40, random_state=42)
wc.generate_from_frequencies(wordDict)
wc.to_file("%s.png"%(file))
def set_dic():
_curpath=os.path.normpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ))
settings_path = os.environ.get('dict.txt')
if settings_path and os.path.exists(settings_path):
jieba.set_dictionary(settings_path)
elif os.path.exists(os.path.join(_curpath, 'data/dict.txt.big')):
jieba.set_dictionary('data/dict.txt.big')
else:
print "Using traditional dictionary!"
if __name__ == '__main__':
set_dic()
file_list = ['data_visualize.txt', 'data_dev.txt', 'data_mining.txt', 'data_arc.txt', 'data_analysis.txt']
dic_name = 'dict.txt'
dic_list = []
getwords = GetWords(dic_name, file_list, dic_list)
getwords.get_dic()
getwords.get_word_to_cloud()
词云示例
此图为爬取拉勾网数据挖掘工程师岗位需要制作的词云
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。